Homework Assignment \#1

Due: Thursday, Oct. 10, 2013
Total marks: $90 / 120$. Term work: 10%

Instructions: Undergraduate students should do a combination of questions with a total of 90 marks. Graduate students should do a combination of questions with a total of 120 marks.

1. (10 Marks) Let $a(x)=x^{9}+x^{5}+x^{3}+x+1, b(x)=x^{5}+x^{4}+x^{3}+x^{2}+x+1 \in \mathbb{F}_{2}[x]$. First use Euclidean algorithm to compute $\operatorname{gcd}(a(x), b(x))$ and then express it as a linear combination of $a(x)$ and $b(x)$ with polynomials in $\mathbb{F}_{2}[x]$ as coefficients.
2. (10 Marks) Let f be a quadratic or cubic polynomial over a field \mathbb{F}. Prove that if $f(\alpha) \neq 0$ for every $\alpha \in \mathbb{F}$ then f is irreducible over \mathbb{F}. Show that the result is not true if f has degree greater than or equal to 4 .
3. (10 Marks) Prove that $f(x)=x^{5}+x^{4}+x^{3}+x^{2}+x+1 \in \mathbb{F}_{2}[x]$ has a multiple factor. Find all the factors of $f(x)$ and their multiplicities.

4. (15 Marks)

(a) Construct the addition and multiplication tables for $\mathbb{F}_{3}[x] /\left(x^{2}+1\right)$. Determine whether or not this ring is a field. (10 marks)
(b) Prove that for any finite field \mathbb{F}_{q} of even characteristic, the ring $\mathbb{F}_{q}[x] /\left(x^{9}+x^{5}+x^{3}+x+1\right)$ cannot be a field. (5 marks)
5. (10 Marks) Consider a $(5,2)$ linear code over \mathbb{F}_{2} with parity-check matrix

$$
H=\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Determine all code words and the minimum distance of the code and then decode the vectors: 11111, 01101 and 01100.
6. (10 Marks) Consider the binary encoding function that sends (a_{1}, a_{2}, a_{3}) into (a_{1}, a_{2}, a_{3}, $\left.a_{1}+a_{2}, a_{2}+a_{3}, a_{1}+a_{3}, a_{1}+a_{2}+a_{3}\right)$. First, give the generator matrix of this code. Then, provide the parity-check matrix, giving n, k and the minimum distance of the code. Finally, decode $m_{1}=1100010$ and $m_{2}=0111010$.
7. (10 Marks) Prove that the fields $\mathbb{F}_{2}[x] /\left(x^{4}+x+1\right)$ and $\mathbb{F}_{2}[x] /\left(x^{4}+x^{3}+x^{2}+x+1\right)$ are isomorphic.
8. (10 Marks) Show that $p(x)=x^{3}-2 x-2$ is irreducible in $\mathbb{Q}[x]$. Let θ be a root of $p(x)$. Compute $(1+\theta)\left(1+\theta+\theta^{2}\right)$ and $\frac{1+\theta}{1+\theta+\theta^{2}}$ in $\mathbb{Q}(\theta)$.
9. (10 Marks) Show that $p(x)=x^{4}+x+1$ is irreducible in $\mathbb{F}_{2}[x]$. Let θ be a root of $p(x)$. Compute $(1+\theta)\left(1+\theta+\theta^{2}+\theta^{3}\right)$ and $\frac{1+\theta}{1+\theta+\theta^{2}}$ in $\mathbb{F}_{2}(\theta)$.
10. (10 Marks) Let $P=P\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ be a polynomial in n variables over an arbitrary field \mathbb{F}. Suppose that the degree of P as a polynomial in x_{i} is at most t_{i} for $1 \leq i \leq n$, and let $S_{i} \subset \mathbb{F}$ be a set of at least $t_{i}+1$ distinct members of \mathbb{F}. If $P\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0$ for all n-tuples $\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in S_{1} \times S_{2} \times \cdots \times S_{n}$, then $P=0$.
11. (10 Marks) Let p be a prime number. Prove that the cyclotomic polynomial $\Phi(x)=$ $x^{p-1}+x^{p-2}+\ldots+x+1$ is irreducible over \mathbb{Q}.
12. (15 Marks) Let $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$ be the ring of Gauss integers, a subring of \mathbb{C}. Describe all elements of residue ring $R:=\mathbb{Z}[i] /(3)$. Is R a field?
13. (10 Marks-Bonus) Let x_{1}, \ldots, x_{n} be variables and a_{1}, \ldots, a_{n} be nonnegative integers. Prove the constant term in the expansion of

$$
\prod_{i \neq j}\left(1-\frac{x_{j}}{x_{i}}\right)^{a_{j}}
$$

is the multinomial coefficient $\frac{\left(a_{1}+\cdots+a_{n}\right)!}{a_{1}!\cdots a_{n}!}$. (Dyson's conjecture).

