Fields and Coding Theory, MATH4109A/6101F Prof. Steven Wang Fall 2013 Carleton University

Homework Assignment #1 Due: Thursday, Oct. 10, 2013 Total marks: 90 /120. Term work: 10%

Instructions: Undergraduate students should do a combination of questions with a total of 90 marks. Graduate students should do a combination of questions with a total of 120 marks.

1. (10 Marks) Let $a(x) = x^9 + x^5 + x^3 + x + 1$, $b(x) = x^5 + x^4 + x^3 + x^2 + x + 1 \in \mathbb{F}_2[x]$. First use Euclidean algorithm to compute gcd(a(x), b(x)) and then express it as a linear combination of a(x) and b(x) with polynomials in $\mathbb{F}_2[x]$ as coefficients.

2. (10 Marks) Let f be a quadratic or cubic polynomial over a field \mathbb{F} . Prove that if $f(\alpha) \neq 0$ for every $\alpha \in \mathbb{F}$ then f is irreducible over \mathbb{F} . Show that the result is not true if f has degree greater than or equal to 4.

3. (10 Marks) Prove that $f(x) = x^5 + x^4 + x^3 + x^2 + x + 1 \in \mathbb{F}_2[x]$ has a multiple factor. Find all the factors of f(x) and their multiplicities.

4. (15 Marks)

- (a) Construct the addition and multiplication tables for $\mathbb{F}_3[x]/(x^2+1)$. Determine whether or not this ring is a field. (10 marks)
- (b) Prove that for any finite field \mathbb{F}_q of even characteristic, the ring $\mathbb{F}_q[x]/(x^9+x^5+x^3+x+1)$ cannot be a field. (5 marks)
- 5. (10 Marks) Consider a (5,2) linear code over \mathbb{F}_2 with parity-check matrix

Determine all code words and the minimum distance of the code and then decode the vectors: 11111,01101 and 01100.

6. (10 Marks) Consider the binary encoding function that sends (a_1, a_2, a_3) into $(a_1, a_2, a_3, a_1 + a_2, a_2 + a_3, a_1 + a_3, a_1 + a_2 + a_3)$. First, give the generator matrix of this code. Then, provide the parity-check matrix, giving n, k and the minimum distance of the code. Finally, decode $m_1 = 1100010$ and $m_2 = 0111010$.

7. (10 Marks) Prove that the fields $\mathbb{F}_2[x]/(x^4+x+1)$ and $\mathbb{F}_2[x]/(x^4+x^3+x^2+x+1)$ are isomorphic.

8. (10 Marks) Show that $p(x) = x^3 - 2x - 2$ is irreducible in $\mathbb{Q}[x]$. Let θ be a root of p(x). Compute $(1 + \theta)(1 + \theta + \theta^2)$ and $\frac{1+\theta}{1+\theta+\theta^2}$ in $\mathbb{Q}(\theta)$.

9. (10 Marks) Show that $p(x) = x^4 + x + 1$ is irreducible in $\mathbb{F}_2[x]$. Let θ be a root of p(x). Compute $(1 + \theta)(1 + \theta + \theta^2 + \theta^3)$ and $\frac{1+\theta}{1+\theta+\theta^2}$ in $\mathbb{F}_2(\theta)$.

10. (10 Marks) Let $P = P(x_1, x_2, \dots, x_n)$ be a polynomial in n variables over an arbitrary field \mathbb{F} . Suppose that the degree of P as a polynomial in x_i is at most t_i for $1 \le i \le n$, and let $S_i \subset \mathbb{F}$ be a set of at least $t_i + 1$ distinct members of \mathbb{F} . If $P(x_1, x_2, \dots, x_n) = 0$ for all n-tuples $(x_1, x_2, \dots, x_n) \in S_1 \times S_2 \times \dots \times S_n$, then P = 0.

11. (10 Marks) Let p be a prime number. Prove that the cyclotomic polynomial $\Phi(x) = x^{p-1} + x^{p-2} + \ldots + x + 1$ is irreducible over \mathbb{Q} .

12. (15 Marks) Let $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ be the ring of Gauss integers, a subring of \mathbb{C} . Describe all elements of residue ring $R := \mathbb{Z}[i]/(3)$. Is R a field?

13. (10 Marks–Bonus) Let x_1, \ldots, x_n be variables and a_1, \ldots, a_n be nonnegative integers. Prove the constant term in the expansion of

$$\prod_{i \neq j} \left(1 - \frac{x_j}{x_i} \right)^{a_j}$$

is the multinomial coefficient $\frac{(a_1+\cdots+a_n)!}{a_1!\cdots a_n!}$. (Dyson's conjecture).