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Abstract

In our paper referred to above we claim to enumerate all �nite prim-
itive linear groups of prime degree r over C with a nonabelian socle.
However, the case where the socle is imprimitive was overlooked. In
the present paper we deal with this case to complete the classi�cation.
2000 Mathematics Subject Classi�cation: 20H20 20C15 20C33

In the paper referred to above, we state a theorem (Theorem 1.2) in
which we claim to enumerate all �nite primitive subgroups G of SL(r;C)
with r prime for which G=Z(G) has a nonabelian socle M=Z(G). We are
indebted to Professor Ziping Zhang (Peking University, Beijing) for pointing
out that our classi�cation fails to include the cases where G is primitive but
M is imprimitive. In the present note we deal with this latter case.

Theorem 1 Let r be prime. Suppose that there exists a �nite primitive
group G � GL(r;C) such that the socle M=Z(G) of G=Z(G) is nonabelian
and M is imprimitive. Then the derived group G0 is imprimitive and for
some n and q we have G0 �= PSL(n; q) and r = (qn � 1)=(q � 1) � 5;
moreover, if n = 2 then q is even, and if n > 2 then q is odd except in when
(n; q) = (3; 2). Conversely, given any integer n and prime power q satisfying
these side conditions, if r = (qn � 1)=(q � 1) � 5 then there exists a �nite
primitive group G � GL(r;C) such that G0 is imprimitive and isomorphic
to PSL(n; q). (In the latter case the socle of G=Z(G) contains PSL(n; q) as
a composition factor and so is nonabelian.)

Futher information, including other arithmetic restrictions on n and q
and restrictions on the possible representations of PSL(n; q), can be deduced
from the lemmas below. For example, n must always be a prime and r is a
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Fermat prime when n = 2. In all cases G=G0Z(G) is cyclic, and has order 2
when n > 2.

We �rst recall from Section 5.1 of [3] a number of properties of S :=
PSL(n; q) which hold when r := (qn � 1)=(q � 1) � 5 is prime. First S =
SL(n; q) = PGL(n; q), and S has a single conjugacy class of subgroups of
index r if n = 2 (the stabilizers of 1-dimensional subspaces) and has two
conjugacy classes of subgroups of index r if n > 2 (the second class consists
of the stabilizers of the (n � 1)-dimensional subspaces). If q = pa where p
is prime, then the Frobenius automorphism � 7! �p (� 2 Fq) applied to the
entries of the matrices in SL(n; q) induces an outer automorphism 
 of S.
The group � := h
i has order a and � �= P�L(n; q)=PGL(n; q). Similarly,
the inverse transpose � : x 7! (x�1)> is an outer automorphism of S when
n > 2. The full outer automorphism group of S is isomorphic to � when
n = 2 and to � � h�i when n > 2. If K is a subgroup of index r in
S, then K is self-normalizing since r is prime and S is nonabelian simple.
The automorphism 
 maps K into itself, but (for n > 2) � interchanges
the two conjugacy classes of subgroups of index r. Thus for all n � 2,
InnK(S)� �= K o � is the full set of automorphisms of S which map K into
itself where InnK(S) is the group of inner automorphisms of S induced by
elements of K.

Assume that G is a �nite primitive subgroup of GL(r;C) with r prime
such that the socleM=Z(G) of G=Z(G) is nonabelian andM is imprimitive.
Lemma 1.1 of [2] shows that S :=M=Z(G) is nonabelian simple and G=Z(G)
is isomorphic to a subgroup of Aut(S). Let H by the last term in the derived
series for M , so H=Z(H) �= S. Since H is nonabelian and r is prime, H
must be irreducible and is imprimitive becauseM is. Recall that imprimitive
implies irreducible so, since r is prime, a character of degree r is imprimitive
if and only if it is an irreducible monomial character.

Lemma 2 Under these hypotheses on G and H:
(a) S �= PSL(n; q) with r = (qn � 1)=(q � 1) � 5;Inn
(b) Z(H) = 1 (so H �= S); and
(c) G=HZ(G) is cyclic and so H = G0.

Proof. (a) Since H is imprimitive, Proposition 1.1 of [3] shows that one
of the following must hold: (i) S = Alt(r) with r � 7; (ii) S = PSL(n; q)
and r = (qn � 1)=(q � 1) � 5; or (iii) (r; S) = (11;PSL(2; 11)); (11;M11) or
(23;M23). Lemma 3.2 of [2] (and the remark which follows it) shows that
Alt(k) has no imprimitive projective representation of prime degree when
k � 7, so (i) cannot hold. On the other hand, M11 and M23 have trivial
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outer automorphism groups which would contradict G 6= H. Furthermore,
a central cover of PSL(2; 11) has only one irreducible character of degree 11,
and that character has the centre in its kernel (see [1]). Since all subgroups
of index 11 in PSL(2; 11) are isomorphic to the simple group Alt(5), the
character of degree 11 is not monomial. Thus it follows that (iii) does not
hold and so (ii) must hold as claimed.

(b) The fact that r = (qn�1)=(q�1) is prime implies that n is prime and
n - q�1. However, when GCD(n; q�1) = 1, it is known (see, for example [1,
page xvi]) that PSL(n; q) ( = An�1(q)) has a trivial Schur multiplier except
when (n; q) = (2; 4); (3; 2); or (4; 2). Since r is prime the only cases left to
consider are (n; q) = (2; 4) and (3; 2): In both of these cases [1] shows that
the unique irreducible character of degree r for a central cover of PSL(n; q)
contains the centre of the central cover in its kernel. Since H is perfect, this
shows that Z(H) = 1 in all cases.

(c) As we noted above, the full outer automorphism group Out(S) of S
is isomorphic to � when n = 2 and to ��h�i when n > 2. Lemma 3.1 of [2]
shows that the cyclic group � has order nk for some k and that n is an odd
prime when n > 2. Since � has order 2, this shows that Out(S) is cyclic in
all cases. Since G=Z(G) is isomorphic to a subgroup of Aut(S) and S �= H
by (b), we conclude that G=HZ(G) is cyclic and so H = G0.

This lemma proves the �rst half of our theorem except for the condition
that, if n > 2, then q is odd or (n; q) = (3; 2). It remains to prove these
conditions and to prove existence of a suitableG when the r = (qn�1)=(q�1)
and the side conditions hold. Thus we consider the following situation:

(*) S = PSL(n; q) where r := (qn � 1)=(q � 1) � 5 is prime, K is one of
the subgroups of index r in S, and S has an irreducible character � := �S

of degree r where � is a linear character of K.
Note that for the isomorphic pairs PSL(2; 5) �= PSL(2; 4) and PSL(2; 7) �=

PSL(3; 2) only the second group in each pair satis�es (*). When S 6=
PSL(3; 2) Lemma 5.3 of [3] shows that �S is irreducible if and only if � 6= 1K ;
the character table for PSL(3; 2) (see, for example, [1]) shows that this is
also true for S = PSL(3; 2). Lemma 5.4 of [3] describes when the images of
representations a¤orded by di¤erent monomial characters �S are conjugate
in GL(r;C).

We also note that under hypothesis (*) when n > 2 we have '� = �' for
every ' 2 Irr(S). In fact, PSL(n; q) = PGL(n; q) because n - q � 1, and
so we have GL(n; q) = SL(n; q)Z where Z is the centre of GL(n; q). On the
other hand, for any x 2 GL(n; q), x> is conjugate to x in GL(n; q) because
the polynomial matrices x�X1 and x>�X1 have the same invariant factors.
Thus x> is conjugate to x in S for each x 2 S and so '� (x) = '((x�1)>) =
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'(x�1) = �'(x) as asserted.
We shall need the following simple number theoretic lemma.

Lemma 3 Suppose we have integers n � 2, 0 � e < a and a prime p such
that (qn � 1)=(q � 1) is prime for q = pa.

(a) If n = 2, then p = 2 and GCD(2a � 1; 2e + 1) = 22t + 1 where 2t is
the largest power of 2 dividing e.

(b) If n > 2, then GCD(pa � 1; pe + 1) equals 1 if p = 2 and equals 2 if
p > 2.

Proof. As we noted above, n must be prime and a = nk for some integer
k � 1. If n = 2 then q + 1 is prime and so p = 2. Write e = 2tc where c is
odd, and put d := GCD(2a�1; 2e+1). Then there exist integers u; v with v
odd such that 2ku+2tcv = 2t. Since 2a � 1 (mod d) and 2e � �1 (mod d),
we have 22

t � 1u(�1)v = �1 (mod d). It is easily seen that 22t + 1 divides
d, and so we conclude d = 22

t
+ 1. On the other hand, if n > 2 and

d := GCD(pa � 1; pe + 1), then 1e � pae � (�1)a = �1 (mod d) because
a = nk and n is an odd prime. Thus d j 2. It is now immediate that d = 1
if p = 2 and d = 2 if p is odd.

We now consider the following question: if (*) holds then under what
conditions on n; q and � does there exist a group T and a primitive character
� of T such that S (= Inn(S)) < T � Aut(S) and �S = �? We showed
earlier that Out(S) is cyclic and so T=S is cyclic. Thus, if such a character
� exists, and G0 is the image of a representation of T a¤ording �, then
any �nite subgroup of GL(r;C) satisfying G0 � G < G0Z where Z is the
group of scalar matrices has G0 �= S. Conversely, any group G satisfying
the conditions of the �rst half of Theorem 1 can be constructed in this way.
The proof of Theorem 1 is now completed by the following lemma.

Lemma 4 Suppose that (*) holds where q = pa for a prime p. Then there
exists a group T such that S < T � Aut(S) and a primitive character � on
T such that �S = � if and only if: (**) � 6= 1K and the order of � divides
pe + 1 for some integer e with 0 � e < a.

If n = 2 then there is always at least one, and generally several, linear
characters � satisfying (**). If n > 2 and p > 2 then the linear character �
of order 2 is the only character satisfying (**). Finally, if n > 2 and p = 2
then the only case in which some character � 6= 1K satis�es (**) is when
(n; q) = (3; 2) (and again � has order 2).

Proof. Among the groups PSL(n; q) which satisfy (*) the group PSL(3; 2)
is exceptional in several ways (see Section 5.1 of [3]) and so it is convenient
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to deal with it separately. We shall deal with PSL(3; 2) in the last paragraph
of this proof, and until then assume that (n; q) 6= (3; 2).

When S 6= PSL(3; 2) the group Lin(K) of linear characters of K is
isomorphic to the multiplicative group of the �eld Fq and so is cyclic of
order q � 1 = pa � 1. Thus the second part of the statement of the lemma
follows immediately from the �rst part and Lemma 3. We therefore consider
the �rst part of the assertion in the lemma.

We now apply Lemma 5.3 of [3] which is valid for any group S satisfying
(*) with the exception of PSL(3; 2). This lemma states that if �; � 2 Lin(K),
then �S = �S if and only if � = � or ��1 (for n = 2) and � = � (for n > 2).
Note that when n = 2 we have � 6= ��1 because Lin(K) is cyclic of order
q � 1 and (*) implies that n - q � 1. Frobenius reciprocity now shows that,
for n = 2, the restriction �K has exactly two linear constituents, � and ��1,
each of multiplicity 1; and that �K has exactly one linear constituent �, of
multiplicity 1 for n > 2.

First suppose that a pair (T; �) of the form referred to in the lemma
exists and that n = 2. Since S has only one conjugacy class of subgroups
of index r, the Frattini argument shows that T = SN where N := NT (K).
Since S \ N = K, it follows that N has index r in T and K C N . As we
observed above, �K = �K has exactly two linear constituents � and ��1,
each of multiplicity 1. Since K C N , Cli¤ord�s theorem shows that �N
either has two linear constituents whose restrictions to K are � and ��1,
respectively, or �N has a constituent � of degree 2 such that �K = �+ ��1.
The former situation cannot hold because it implies that � is induced from
a linear character on N contrary to the hypothesis that � is primitive. Thus
�N has a constituent � such that �K = � + ��1: Now Cli¤ord�s theorem
shows that there exists x 2 N rK such that �x = ��1. The automorphism
of S induced by conjugation by xmapsK into itself, and so lies in InnK(H)�
as noted earlier. Since � is a class function on K, this shows that �x = ��

for some � 2 �. Thus, by the de�nition of �, ��1 = �x = �p
e
for some e

with 0 � e < a and so the order of � divides pe + 1 as asserted.
Next consider the case where such a pair (T; �) exists and n > 2 (ex-

cluding S = PSL(3; 2)). Then S has two conjugacy classes C1 and C2, say, of
subgroups of index r which are interchanged under the action of � . Without
loss in generality assume K 2 C1 and so K� 2 C2. First suppose that C1 and
C2 are not fused in T . As in the case n = 2, the Frattini argument shows
that T = SN where N := NT (K) has index r in T and K C N . However,
since n > 2, �K = �K has � as its unique linear constituent, and � has mul-
tiplicity 1. Now Cli¤ord�s theorem shows that �N has a linear constituent
lying over � which implies that � is induced from a linear character on N ,

5



contrary to the hypothesis that � is primitive. Thus we conclude that T
fuses the two classes and so there exists x 2 T which interchanges the two
classes C1 and C2 by conjugation. Since K� and x�1Kx both lie in C2 we can
�nd u 2 S such that K� = (xu)�1K(xu). Thus if � is the automorphism of
S induced by conjugation by the element xu from T , then �� 2 Aut(S) �xes
K. As observed earlier, this means that �� 2 InnK(H)� for some � 2 �.
Since � = �S is invariant under T , we have �� = �, and so

(��1)S = (��)S = �� = �� = ��� = �� = (��)S :

As noted above Lemma 5.3 of [3] now shows that ��1 = �� because n > 2,
and hence ��1 = �p

e
for some e with 0 � e < a. Thus the order of � divides

pe+1 in this case as well. In particular, since Lin(K) is cyclic of order pa�1,
and � 6= 1K , Lemma 3 implies that in this case (n > 2 and (n; q) 6= (3; 2)) p
is odd and � has order 2.

We now assume that � has order dividing pe + 1 for some e (still ex-
cluding the case (n; q) = (3; 2)). We shall show that � can be extended to
a primitive character � on a larger group T � Aut(S). Choose � 2 � as
the automorphism of S induced by the �eld automorphism � 7! �p

e
. Since

� has order dividing pe + 1, and the automorphism � maps K into itself,
�� = �p

e
= ��1. Hence �� = (��)S = (��1)S = �� where �� = � if n = 2

(by Lemma 5.3 of [3]) and �� = �� if n > 2. De�ne T := S o h�i if n = 2,
and T := S o h��i if n > 2. Since T=S is cyclic, the T -invariant character �
can be extended to a character � on T (see [4, Corollary 11.22]). It remains
to show that � is primitive. Suppose the contrary. Then � = �T where �
is a nontrivial linear character of some subgroup L of index r in T . Since
r = (pan�1)=(pa�1) > 2a, GCD(jT : Lj ; jT : Sj) = 1 and so T = LS. Thus
L \ S has index r in S and L \ S C L. We now show that this leads to a
contradiction in both cases: n = 2 and n > 2.

If n = 2 then S has only a single conjugacy class of subgroups of index
r and so replacing L by a suitable conjugate we may assume L \ S = K C
L. Since K is invariant under �, a comparison of the orders shows that
L = K h�i : As saw above K has exactly two linear characters � and ��1,
each of multiplicity 1, and �� = ��1 by the choice of �. Hence by Cli¤ord�s
theorem �L has an irreducible constituent �, say, such that �K = � + ��1

and no linear constituent. This contradicts the choice of L and shows that �
is primitive when n = 2. On the other hand, if n > 2, then K�� = K� and
so the two S-conjugacy classes C1 and C2 of subgroups of index r in S are
fused in T . In particular, jT : NT (M)j = jC1 [ C2j = 2r for eachM 2 C1[C2.
However L \ S 2 C1 [ C2, and L \ S C L. This contradicts the hypothesis
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that L has index r in T . Thus in both cases we obtain a contradiction, and
so conclude that � is primitive as claimed. This completes the proof in all
cases except when S = PSL(3; 2).

Finally, consider S = PSL(3; 2). Tables in [1] show that S has two
conjugacy classes of subgroups of index r, consisting of subgroups isomorphic
to Sym(4), and the two classes are fused in Aut(S) = S o h�i. Since
Out(S) has order 2, the only choice for T is Aut(S). The unique irreducible
character � of degree 7 for S is induced from the alternating character on
K, and the tables in [1] show that � has two extensions to T := Aut(S)
both of which are primitive (see the argument for n > 2 in the preceding
paragraph). This completes the proof of the lemma.
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