
(2023.12)

Errata for Dixon and Mortimer “PERMUTATION
GROUPS”(Springer 1996)

Chapter 1
10:11 read “stabilizer (K ×K)1.”
11:-10 read “on each of its orbits of length > 1,”
12: 21 read “{1, 4, 6, 7} and {2, 3, 5, 8} are also minimal blocks. Show that

there is only one other set of nontrivial blocks and these are also minimal.”
13:13-15 read “Suppose that G is a group acting primitively on a set Ω and

that ∆ is a proper subset of Ω containing at least two points. Show that for
each pair of distinct points ...”
13:18 add “[Hint: Show that the relation α ≈ β ⇐⇒ (for all x ∈ G,

{α, β} ∩∆x = {α, β} or ∅) is a G-congruence.]”
17:-3 read “If ∆,∆′ ∈ Σ are fixed setwise by H, then ”
19:21 read “If fix(Gα) is finite, show it is a block for G.”
22:2 read “... = (βσ(a))σ(x) = (λ(αρ(a)))σ(x) = λ(γ)σ(x) ”
22:-13 read “Thus Lemma 1.6B shows ...”
23:9 read “and let α ∈ Ω. ”
23:-2 replace this incorrrect exercise by
1.6.19 If x, y are distinct elements of order 2 in a finite group G, show that

〈xy〉 C 〈x, y〉 and hence that 〈x, y〉 is a dihedral group. Hence show that every
primitive subgroup of order 2n in Sn is dihedral.
27:-10 read “acting transitively on a set Ω”

Chapter 2
30:14 read “—at least in principle—”
34:10 read “Suppose that G is a permutation group of degree at least 5. If

G is k-transitive for some k ≥ 3, show that every nontrivial normal subgroup
N of G is (k − 2)-transitive. In particular, ...”
35:12 read “(see Exercise 2.1.7)”
35:20 read “Hence show that Sn acts ...”
39:-3 replace Exercise 2.3.7 by: “Let n ≥ 3. Consider the graph ... when

they commute. Show that: (i) if n = 3 or n ≥ 5 then Aut(G) ∼= Sn, and (ii) if
n = 4 then Aut(G) is imprimitive and isomorphic to C2 × S4.”

43:14 amend Exercise 2.4.5 by adding the hypothesis “G is of finite exponent”
to parts (ii) and (iv). [The following example shows that the statements of (ii)
and (iv) as they stand are incorrect. Let {Γi}i be a partition of Ω and for
each i let xi be a cycle with support Γi. Then G := 〈x1, x2, ...〉 is an abelian
group. Define z ∈ Sym(Ω) such that the restriction zΓi = xi for each i. We
claim that z ∈ G0. Indeed the 2-relations on Ω are just the subsets of Ω × Ω,
and the G-invariant 2-relations are the unions of G-orbits on Ω × Ω. Thus
x ∈ G0 ⇐⇒ (α, β)x and (α, β)x

−1
lie in (α, β)G for all α, β ∈ Ω. In our case

(α, β)z = (αz, βz) = (αxi , βxj ) when α ∈ Γi and β ∈ Γj . If i 6= j then
(αxi , βxj ) = (α, β)xixj ∈ (α, β)G because G is abelian and αxj = α and βxi = β
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by the construction ofG. On the other hand, if i = j then (αxi , βxj ) = (α, β)xi ∈
(α, β)G. A similar argument shows that (α, β)z

−1 ∈ (α, β)G and so z ∈ G0 as
claimed. Taking Ω infinite and |Γi| = 3i (i = 1, 2, ...) we obtain a group G which
contains an element z of infinite order and satisfies the hypotheses of both (ii)
and (iv).]
46:-9 read “when x−1 =”
48:-5 read “Spm (∼= Sym(∆m)) ”
51:12-14 read “a constant function in Fun(Γ,∆) whose value lies in Π cannot

be mapped under W to a constant function whose value lies in ∆rΠ; thus W
is intransitive. In the case ...”
51:-9 read “Define g ∈ Fun(Γ,K)”
51:-8 read “[f(γ0), u) ∈ K \Kδ”
51:-4 read “(1, x)B(γ0)(1, x)−1 = B(γx0 )
51:-3 read “B(γ) ≤M for all γ ∈ Γ”
52:4 read “Show that a primitive group G of degree > 1 is not regular if and

only if ...”
53:15 read “and G∞0 transitive on the nonzero elements of F .”
57:8 read “Put G := PGLd(F ) and define ∆ := ... ”
57:-18 delete one copy of “points”
58:11 read “Artin (1957)”
60:7 read “(1234), (13)”
60:14 read “(12)(34)(56), (153)(246)”
60:16 read “(123)(456), (12)(45), (14)
63:-16 read “PGL2(5) ∼= S5”

Chapter 3
66:—9 read “the diagonal orbit ∆1 := {(α, α) |α ∈ Ω}; the other orbitals

are called nondiagonal.”
68:9 read “H := 〈t〉”
70:-18 read “Theorem 1.5A”
70:-16 delete “that G is finite,”
71:13 read “Then |(Σ ◦ Λ) (α)| ≤ ...”
71:-10 read “in some Φ(s) because...”
75:-19 read “A3 is a composition factor”
77:25 read “Theorem 3.3D”
78:-7 and -5 read “then y = (βδε) ∈ N”
84:-1 and 85:1,2 replace “2-cycle”by “3-cycle”and “p 6= 2”by “p 6= 3”
93:-8 read “(a1 + ...+ ak)p = ap1 + ...+ apk ”
96:21 add “for p > 2”. For elementary abelian 2-groups the situation is

more complicated. A wreath product construction enables us to construct a
primitive group isomorphic to S2kwr Cl which contains a regular elementary
abelian subgroup of order 2kl, and this group is not 2-transitive when k, l > 1.
So a regular elementary abelian subgroup of order 2n is not a B-group when
n is composite. A theorem of Cai-Heng Li (“The finite primitive permutation
groups containing an abelian regular subgroup”, Proc. London Math. Soc. (3)
87 (2003) 725—747) shows that in the remaining cases (n is prime) a primitive
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group which contains a regular elementary abelian subgroup of order 2n must be
a subgroup of AGL(n, 2) (the 2-transitive subgroups of AGL(n, 2) are discussed
in Section 7.7).
102:20 read “w ∈W”

Chapter 4

109:-5 read “Show that C ∼= C0 wrΣ Sym(Σ) where ...”
110:4 read “each point stabilizer of H is its own normalizer in H, ”
113:-2 read “p-group of order pn”
114:20 read “K × CG(K)”
119:-10 read “with a finite nontrivial suborbit whose paired suborbit is also

finite, show that ”
{David Evans, Suborbits in infinite primitive permutation groups, Bull. Lon-

don Math. Soc. 33 (2001) 583—590 gives a construction of an infinite primitive
permutation group of arbitrary infinite cardinality with a finite nontrivial sub-
orbit whose paired suborbit is infinite.}
124:-4 read “H is a transitive normal subgroup”
132:-2 read “for all p and m except (p,m) = (2b − 1, 2) for some integer b or

(p,m) = (2, 6); see for example ...”

Chapter 5

163:4 read “5.5.2 Using the fact that λ(s+ 1) ≥ (2s− 4)/3 ...”
170:1-4 read “5.7.3 Show that A6 is isomorphic to SL2(9) modulo its centre.

Hence λ(6) = 2.”
170:5-6 read “5.7.4 Show that there is no field F for which SL2(F ) contains

a finite preimage G of A7. (However, A7 is isomorphic to a section of SL3(25),
and so λ(7) = 3.)”
170:13 read “For all k ≥ 5, λ(k) ≥ (2k − 6)/3.”
172:8 read “... Since k ≥ 8, we have d ≥ 3”
172:21-22 read “... shows that d − 2 ≥ {2(k − 3) − 6}/3 and hence d ≥

(2k − 6)/3 as required. ...”
172:after the last line add the following paragraph:

“Note that if d = 3 then the Jordan form for x cannot consist of a single
block. Indeed, the centralizer of such a block is a group of upper triangular
matrices and hence solvable, but we know that CG(x) is not solvable.”
173:2 delete “(since d ≥ 4)”

Chapter 6
181:3-5 The off-diagonal entries of AAT should be λ2. Then read: “The

determinant of the v× v matrix AAT is (r+ (v− 1)λ2)(r−λ2)v−1 (see Exercise
6.2.2 below). This determinant is nonzero since r > λ2 by the formulae above
and our general assumption that k < v.”
183:-6 read “and that µij = µi−1,j − µi,j+1”
188:18 Yervand Yeghiazarian points out that there is a fourth triple of three

quadrangles which covers the 6 triangles with base 00, 01, namely {Ξ3,Ξ5,Ξ6},
and there are no others. However, unlike the other three possibilities listed in
on page 188, there is no i such that this fourth triple lies in Si. This leaves a
potential gap in the proof.
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Write this triple as: (*) 00 01: 10 21; 11 20; 12 22. We shall show that (*)
cannot be extended to a set S satisfying (6.1) and so we can eliminate (*) as a
possible value of S ∩ Q(00, 01). Then the rest of the proof on page 188 follows
unchanged.

Consider the list of triples of quadrangles which give a covering of the 6
triangles with base 00, 10 (obtained by switching coordinates of each point in
the corresponding list for 00, 01):

(1) 00 10: 01 11; 21 22; 02 12
(2) 00 10: 01 21; 11 02; 12 22
(3) 00 10: 01 12; 21 11; 02 22
(4) 00 10: 01 12; 11 02; 21 22
Each of the triples (1)—(4) contains a quadrangle which intersects one of the

quadrangles of (*) in a triangle: for example, for the triples (1), (3) and (4) take
the triangle 00 01 10, and for the triple (2) take the triangle 00 12 22. This
is contrary to (6.1) so none of these possibilities for S ∩ Q(00, 10) is consistent
with S ∩ Q(00, 01) = (*). Hence the only possibilities for S ∩ Q(00, 01) are
those three listed on p. 188.

207:2 read “Lemma 6.8B”
Chapter 7
210:-2 read “the stabilizers Gα1α2...αk of k points”
217:10 read “Theorem 7.2C shows”
217:13 read “finite Frobenius”
237:13 read “and 4 - n if q ≡ 3 (mod 4)”
239: Table 7.1 for each of the seven groups the generator a should read[

0 −1
1 0

]
244:-18 read “If n > 8, show”

245:-18 read “that |Sp2m(F )| = qm
2
m∏
i=1

(q2i − 1) [see Taylor (1992)].”

246:17 read “ta = t−1
a , and that”

248:-14 read “G = Sp4(2) ∼= S6 and H = G.”
251:19 read “σ2 is the Frobenius automorphism ξ 7→ ξ3”
251:24 read “λ3 = η1η

σ
3 − ησ+1

1 ησ2 + ησ+3
1 η2+ ”

251:-3 read “(η1, η2, η3, λ1, λ2, λ3)↔ (λ2/λ3, λ1/λ3, η3/λ3, η2/λ3, η1/λ3, 1/λ3)
{The permutation representation of R(q) on p. 251 can be deduced, for

example, from [KLM] G. Kemper, F. Luebeck and K. Magaard, “Matrix gen-
erators for the Ree groups 2G2(q)”, Comm. Algebra 29 (2001) 407-413 where
the authors give explicit 7 × 7 matrices over GF (q) generating R(q). The 2-
transitive permutation action of degree q3 + 1 comes from right multiplication
by R(q) on the set of right cosets of the subgroup H consisting of all lower
traingular matrices. If we define Q as the Sylow 3-subgroup consisting of the
matrices xS(t, u, v) in [KLM], and use w to denote the involution denoted by
n in [KLM], then Q ∪ {w} is a set of coset representatives of H. Using the
parametrization (η1, η2, η3) = (tθ,−uθ, vθ − uθtθ) for the coset with represen-
tative xS(t, u, v), and ∞ for Hw, we obtain the permutation representation on
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page 251 with f1 = λ1, f2 = λ2 and f3 = λ3.). Note that θ in [KLM] is the
reciprocal of our σ.}

Chapter 8
256:15 read “has order |Ω| for c = ℵ0 and order at most |Ω|c for ℵ0 <

c ≤ |Ω|.”
262:12 read “Theorem 3.3C shows ”
263: replace the second paragraph by:
Let G ≤ FSym(Ω) be residually finite. We have to show that every orbit of

G is finite. Suppose the contrary and let Σ be the union of the infinite G-orbits.
Put K := G(Ω\Σ).
First note that if H ≤ G has finite index in G, then Σ is a union of infinite

H-orbits. Indeed, if γ ∈ Σ, then
∣∣γH ∣∣ = |H : Hγ | ≥ |G : Gγ | / |G : H|.

We next show that K must be transitive on each infinite G-orbit Γ. Fix
α, β ∈ Γ with α 6= β and choose x ∈ G such that αx = β; we must show
that αz = β for some z ∈ K. Put ∆ := supp(x) ∩ Σ and Φ := supp(x) \ ∆.
Since each point in the finite set Φ lies in a finite G-orbit, G(Φ) has finite
index in G, and so all the G(Φ)-orbits in Σ are infinite. Thus Theorem 3.3C
shows that there exists y ∈ G(Φ) such that the finite subset ∆ ⊆ Σ satisfies
∆y ∩ ∆ = ∅. Since the supports of x and y on the invariant subset Ω \ Σ
are disjoint, z := xyx−1y−1 leaves all points in Ω \ Σ fixed, and so z lies in
K. On the other hand, βy ∈ ∆y ⊆ Σ \ ∆ and so βy /∈ supp(x). Therefore
αz = (βy)x

−1y−1 = β as required. This proves the transitivity of K on each
infinite G-orbit.
Finally, note that for each subgroup H of finite index in K, Lemma 8.3C(i)

shows that (KΣ)′ ≤ HΣ and so K ′ ≤ H. Since K is a subgroup of a residually
finite group G, K is also residually finite, and so the intersection of all subgroups
of finite index in K must be 1. Thus K ′ = 1 and so K is abelian. However, if Γ
is an infiniteK-orbit, then Lemma 8.3C(ii) applied toKΓshows that Z(KΓ) = 1.
Thus KΓ = 1 contradicting the transitivity of K on Γ. This completes the
proof.

Remark 1 This proof is based on P.M. Neumann, “The structure of finitary
permutation groups”, Archiv Math. 27 (1976) 3-17.

Appendix B (These corrections are due to Heiko Theissen and Colva Roney-
Dougal)
In Table B.2 the ranks of the normalizers of the following groups should be

corrected:
A9 (degree 840): rank 9; L2(52) (degree 325): rank 10; L3(22).3 (degree

960): rank 10; L3(22).2 (degree 336): rank 6; U3(22) (degree 208): rank 4 and
(degree 416): rank 5; S4(22).4 (degree 425): rank 5; Sz(23) (degree 560): rank
7; M12 (degree 495): both of rank 8.
Also the normalizer for H = L2(p2) (degree p2 + 1 with p prime) should be

H.22 and for H = S4(23) (degree 585) should be H.3.
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In Table C.2 the normalizer for H = L3(3) (degree 13) should be H and for
L3(4) (degree 21) should be H.S3. Also under L3(q) (degree q2 + q + 1) the
lower bound should be 11 (see below).
In Table B.4 the following counts should be corrected:
Degree 91: there is only one cohort of type C (L3(9) is incorrectly listed

twice)
Degree 244: there is only one cohort of type B
Degree 585: there is only one cohort of type E
Degree 364: there is a cohort of type C
Degree 384: there is no cohort of type C.
In Tables B.2 and B.4 for degree 574 there is a cohort missing for the group

L2(41). It has stabilizer A5, rank 16 and is its own normalizer in S574 (Colva
Roney-Dougal 2004.06)
Both GAP and MAGMA include extended lists of primitive groups up to

degree 2499.

• Thanks to Seyed Hassan Alavi, Asigan, Owen Brison, Joanne Charlebois,
Maria Cristeta Cuaresma, Vahid Dabbaghian-Abdoly, Paul Derbyshire,
Stephan Elsenhans, Ulrich Felgner, Dane Flannery, Ashwin Ganesan,
Chris Hall, Amtul Khan, Richard Lyons, Kenneth Monks, Christopher
Monsour, Eric Moorhouse, Colva Roney-Dougal, Benjamin Sambale, Dan
Segal, Simon Smith, Heiko Theissen, Leandro Vendramin, Marziyeh Viseh,
Yervand Yeghiazarian and Hua Zhang for bringing some of these errors
to our attention. We should appreciate learning of any other errors.
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