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A restricted Epstein zeta function
and the evaluation of some definite integrals
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Habib Muzaffar and Kenneth S. Williams (Ottawa)

1. Introduction. A nonzero integer d is called a discriminant if d ≡ 0
or 1 (mod 4). We set

(1) d = ∆(d)f(d)2,

where f(d) is the largest positive integer for which ∆(d) = d/f(d)2 is a
discriminant. The integer f(d) is called the conductor of the discriminant d.
The discriminant d is called fundamental if f(d) = 1. A discriminant d
is fundamental if and only if d is odd and squarefree or d is even, d/4 is
squarefree and d/4 ≡ 2 or 3 (mod 4). We note that the discriminant ∆(d) is
fundamental so that f(∆(d)) = 1 and ∆(∆(d)) = ∆(d). If d = ∆′f ′2, where
∆′ is a fundamental discriminant and f ′ is a positive integer, then ∆′ = ∆(d)
and f ′ = f(d). The discriminant∆(d) is called the fundamental discriminant
associated with the discriminant d. If d1 and d2 are discriminants then d1d2

is also a discriminant. We have

d1 = ∆(d1)f(d1)2, d2 = ∆(d2)f(d2)2, d1d2 = ∆(d1)∆(d2)(f(d1)f(d2))2

so that

d1d2 = ∆(∆(d1)∆(d2))(f(∆(d1)∆(d2))f(d1)f(d2))2,

and thus

∆(d1d2) = ∆(∆(d1)∆(d2)), f(d1d2) = f(∆(d1)∆(d2))f(d1)f(d2).

In particular we have

f(d1) | f(d1d2), f(d2) | f(d1d2).
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If k is a positive integer then k2 is a discriminant with ∆(k2) = 1, f(k2) = k,
so that for any discriminant d we have

∆(dk2) = ∆(∆(d)∆(k2)) = ∆(∆(d)) = ∆(d),

f(dk2) = f(∆(d)∆(k2))f(d)f(k2) = f(∆(d))f(d)k = f(d)k.

When there is no confusion, we write ∆ = ∆(d) and f = f(d).
Throughout the rest of this paper, d represents a nonsquare discriminant

and n represents a positive integer. For integers a, b and c with gcd(a, b, c)
= 1, we use (a, b, c) to denote the primitive, integral, binary quadratic form
ax2 + bxy + cy2. A form (a, b, c) with b2 − 4ac = d is called a form of
discriminant d. Such a form is irreducible in Z[x, y] as d is not a square. Two
forms (a, b, c) and (a′, b′, c′) are equivalent if and only if there exist integers
r, s, t and u with ru − st = 1 such that the substitution x = rX + sY, y =
tX+uY transforms (a, b, c) to (a′, b′, c′). If (a, b, c) is equivalent to (a′, b′, c′),
we write (a, b, c) ∼ (a′, b′, c′). The relation ∼ is an equivalence relation on
the set of forms of discriminant d. We denote the class of (a, b, c) by [a, b, c].
The classes of primitive, integral, binary quadratic forms of discriminant d
(only positive-definite forms are used if d < 0) form a finite abelian group
under Gaussian composition (see for example [1: Chapter 4]). We denote
this group by H(d) and its order by h(d). The cosets of the subgroup of
squares in H(d) are called genera and we denote the group of genera by
G(d). The identity element of G(d) is called the principal genus. By group
theory we have |G(d)| = 2t, where t = t(d) is a nonnegative integer. The
value of t(d) is given by [7: §153, pp. 409–413; §151, pp. 400–407] (see also
[13: p. 277])

t(d) =




ω(d) if d ≡ 0 (mod 32),
ω(d)− 2 if d ≡ 4 (mod 16),
ω(d)− 1 otherwise,

where ω(d) denotes the number of distinct prime factors of d. Thus |G| =
h(d)/2t for any G ∈ G(d).

Let [a, b, c] ∈ H(d). The positive integer n is said to be represented by
the form (a, b, c) if there exist integers x and y with ax2 + bxy + cy2 = n,
and the pair (x, y) is called a representation. If d < 0 every representation
(x, y) is called primary. If d > 0 the representation (x, y) is called primary
if it satisfies

(2) 2ax+ (b−
√
d)y > 0 and 1 ≤

∣∣∣∣
2ax+ (b+

√
d)y

2ax+ (b−
√
d)y

∣∣∣∣ < ε2,

where

(3) ε = ε(d) = (x0 + y0

√
d)/2,

and (x0, y0) = (x0(d), y0(d)) is the solution in positive integers to the equa-
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tion x2 − dy2 = 4 for which y0 is least (see for example [12: p. 282]). We
set

(4) R(a,b,c)(n, d) = card{(x, y) ∈ Z2 : ax2+bxy+cy2 = n, (x, y) primary}.
R(a,b,c)(n, d) is finite and R(a,b,c)(n, d)=R(a′,b′,c′)(n, d) if (a, b, c)∼(a′, b′, c′)
(see for example [12: §11.4]). Thus we can define

(5) R[a,b,c](n, d) = R(a,b,c)(n, d).

For G ∈ G(d), we set

(6) RG(n, d) =
∑

K∈G
RK(n, d).

When d < 0, Huard, Kaplan and Williams [13: Theorem 8.1] have ob-
tained an explicit formula for RG(n, d). Using this formula they showed [13:
Theorem 10.2] that for s→ 1+,

(7)
∞∑

n=1

RG(n, d)
ns

=
h(d)
2t(d)

· 2π√
|d|
· 1
s− 1

+BG(d) +O(s− 1),

where BG(d) is an explicit constant depending on d and G. In this paper,
we extend their ideas to the case d > 0. In Section 2 we obtain a formula
for RG(n, d) when d > 0 (see Theorem 1). In Section 4 we use this formula
to determine

∑∞
n=1 RG(n, d)/ns for d > 0 and s > 1 (see Theorem 3). From

Theorem 3 we deduce that

(8)
∞∑

n=1

RG(n, d)
ns

=
h(d)
2t(d)

· log ε(d)√
d
· 1
s− 1

+B(d) + β(d,G) +O(s− 1),

where B(d) is a constant depending only on d and not on G and β(d,G) is
an explicit constant depending on both d and G (see Theorem 4).

If Q = (a, b, c) is a positive-definite binary quadratic form of discriminant
d < 0, the Epstein zeta function ZQ(s) corresponding to Q is defined for
s > 1 by the infinite series

(9) ZQ(s) =
∞∑

x,y=−∞
(x,y)6=(0,0)

1
Q(x, y)s

(see for example [5], [8], [14], [15]). The behaviour of ZQ(s) near s = 1 is
given by Kronecker’s limit formula (see for example [13: p. 300], [15: p. 14])

(10) ZQ(s) =
2π√
|d|
· 1
s− 1

+K(a, b, c) +O(s− 1),

where K(a, b, c) is an explicit constant depending only on a, b and c. Let
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G ∈ G(d). As
∞∑

n=1

RG(n, d)
ns

=
∑

[a,b,c]∈G
Z(a,b,c)(s)

we obtain

h(d)
2t(d)

· 2π√
|d|
· 1
s− 1

+BG(d) +O(s− 1)

=
∑

[a,b,c]∈G

(
2π√
|d|
· 1
s− 1

+K(a, b, c) +O(s− 1)
)
,

so that

(11) BG(d) =
∑

[a,b,c]∈G
K(a, b, c).

The Chowla–Selberg formula for genera, which was proved by Huard, Kaplan
and Williams [13: Theorem 1.1] in 1995, is obtained by putting the explicit
values of BG(d) and K(a, b, c) into (11) and exponentiating the resulting
formula.

We now define an analogue of the Epstein zeta function (9) in the case
of an indefinite binary quadratic form Q = (a, b, c) of discriminant d > 0
with a > 0. We remark that if the form (a, b, c) is indefinite, then we can
always replace it by an equivalent one with a > 0. To see this, recall that an
indefinite form (a, b, c) represents both positive and negative integers. Let k
be a positive integer represented by (a, b, c). Then there is a positive integer l
dividing k which is properly represented by (a, b, c). Hence (a, b, c) ∼ (l, b′, c′)
for some integers b′ and c′. We call our analogue of (9) the restricted Epstein
zeta function and denote it by ZQ(s). We set

(12) ZQ(s) =
∞∑

x,y=−∞
Q(x,y)>0

2ax+(b−
√
d)y>0

1≤
∣∣ 2ax+(b+

√
d)y

2ax+(b−
√
d)y

∣∣<ε2

1
Q(x, y)s

.

It is shown in Section 3 that the series in (12) converges for s > 1 so that
ZQ(s) is defined for s > 1. Also in Section 3, it is shown that as s→ 1+

(13) ZQ(s) =
log ε(d)√

d
· 1
s− 1

+ CQ +O(s− 1)

for an explicit constant CQ (see Theorem 2). We remark that Zagier [16:
Theorems, pp. 166–167] has considered a different analogue of the Epstein
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zeta function, namely, the infinite series

∞∑

x=1, y=0

1
Q(x, y)s

for an indefinite binary quadratic form Q = (a, b, c) of discriminant d > 0
with a > 0, b > 0 and c > 0. Let G ∈ G(d). Since

(14)
∞∑

n=1

RG(n, d)
ns

=
∑

[Q]∈G
ZQ(s),

we obtain from (8), (13) and (14)

h(d) log ε(d)

2t(d)
√
d
· 1
s− 1

+B(d) + β(d,G) +O(s− 1)

=
∑

[Q]∈G

(
log ε(d)√

d
· 1
s− 1

+ CQ +O(s− 1)
)

=
h(d) log ε(d)

2t(d)
√
d
· 1
s− 1

+
∑

[Q]∈G
CQ +O(s− 1),

so that

(15) B(d) + β(d,G) =
∑

[Q]∈G
CQ.

The formula (15) provides an analogue of the Chowla–Selberg formula for
genera in the case of positive discriminants. However the constant B(d)
contains the quantity L′(1,∆) (see (98) and (100)), which is difficult to give
explicitly (see Deninger [6]). Thus in Section 5 we eliminate B(d) from (15)
to obtain a simpler formula. Let G1 and G2 be two genera of G(d). Then,
from (15), we obtain

(16) β(d,G1)− β(d,G2) =
∑

[Q]∈G1

CQ −
∑

[Q]∈G2

CQ.

Putting the explicit expressions for β(d,Gk) (k = 1, 2) and CQ into (16), we
obtain Theorem 5.

By taking particular choices of the genera G1 and G2 in Theorem 5, we
are able to evaluate explicitly certain definite integrals. The nature of these
integrals suggests that it would be difficult to evaluate them by conventional
means, a view previously expressed by Chowla ([3: p. 372], [4: p. 1019]).
These integrals are given in Theorems 6–10. They include three integrals
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given by Herglotz [11: p. 14] as well as many new ones such as

(17)
1�

0

tan−1(t3+
√

8)
1 + t2

dt =
1
16

log 2 log(3 +
√

8)

and
1�

0

log(1 + t13+
√

168)
1 + t

dt =
π2

24
(13−

√
672)(18)

+
1
2

log(1 +
√

2) log
(

5 +
√

21
2

)

+
1
4

log(2 +
√

3) log(15 +
√

224)

+
1
4

log(5 +
√

24) log(8 +
√

63)

+
1
2

log 2 log(2(13 +
√

168)3/2)

(see Theorem 10).

2. Formula for RG(n, d). Proof of Theorem 1. In this section, up
to and including Lemma 12, d may be either positive or negative. From
Lemma 13 on, and throughout the rest of the paper, d is assumed to be
positive.

The discriminants −4, 8,−8 and p∗ = (−1)(p−1)/2p (p prime > 2), are
called prime discriminants. The prime discriminants corresponding to the
discriminant d are the discriminants p∗1, . . . , p

∗
t+1, together with p∗t+2 if d ≡ 0

(mod 32), where t = t(d), given as follows:

• d ≡ 1 (mod 4) or d ≡ 4 (mod 16),
p1 < . . . < pt+1 are the odd prime divisors of d.

• d ≡ 12 (mod 16) or d ≡ 16 (mod 32),
p1 < . . . < pt are the odd prime divisors of d and p∗t+1 = −4.

• d ≡ 8 (mod 32),
p1 < . . . < pt are the odd prime divisors of d and p∗t+1 = 8.

• d ≡ 24 (mod 32),
p1 < . . . < pt are the odd prime divisors of d and p∗t+1 = −8.

• d ≡ 0 (mod 32),
p1 < . . . < pt−1 are the odd prime divisors of d, p∗t = −4, p∗t+1 = 8,
p∗t+2 = −8.

Following Huard, Kaplan and Williams [13] we denote the set of prime
discriminants corresponding to d by P (d). We denote the set of all products
of pairwise coprime elements of P (d) by F (d).
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It is known that a fundamental discriminant d can be written uniquely
as a product of pairwise coprime prime discriminants and that any such
product is a fundamental discriminant [15: Proposition 9]. It is easy to check
that the prime discriminants occurring in such a decomposition are precisely
the elements of P (d). It is convenient at this point to note some properties
of the set F (d).

Lemma 1. (a) F (d) = {d1 : d1 is a fundamental discriminant , d1 | d,
and d/d1 is a discriminant}.

(b) For any positive integer k, P (d) ⊆ P (dk2) and F (d) ⊆ F (dk2). Also,
P (∆) ⊆ P (d), 1 ∈ F (d), ∆ ∈ F (d), |F (d)| = 2t(d)+1, and

|P (d)| =
{
t(d) + 2 if d ≡ 0 (mod 32),
t(d) + 1 otherwise.

(c) If d1 ∈ F (d) then f(d/d1) | f(d).
(d) Let m be a positive integer such that m | f . Let d1 ∈ F (d/m2). Then

f(d/m2d1) | f/m and m | f(d/d1).

(e) Let m be a positive integer. Then

m | f(d), d1 ∈ F (d/m2) ⇔ d1 ∈ F (d), m | f(d/d1).

Proof. (a), (b). These two parts of the lemma are given in [13: Lemma 2.1]
for the case d < 0. It is easy to check that they are also valid for d > 0.

(c) As d1 ∈ F (d), by (a) we see that d1 and d/d1 are discriminants with
d1 · d/d1 = d, so that by the properties given at the beginning of Section 1,
we have f(d/d1) | f(d).

(d) As m is a positive integer such that m | f we have m2 | d, d/m2 is a
discriminant, and f(d/m2) = f/m. Further, as d1 ∈ F (d/m2), d1 is a fun-

damental discriminant such that d1 | d/m2 and d2 = d/m2

d1
is a discriminant.

From d1d2 = d/m2 we have f(d2) | f(d/m2), that is, f(d/m2d1) | f/m, as
asserted. Also d/d1 = d2m

2 so that

f(d/d1) = f(d2m
2) = f(d2)m,

that is, m | f(d/d1).
(e) Suppose first that m | f(d) and d1 ∈ F (d/m2). Then d1 ∈ F (d) by

(b) and m | f(d/d1) by (d). Hence we have shown that

m | f(d), d1 ∈ F (d/m2) ⇒ d1 ∈ F (d), m | f(d/d1).

Now suppose that d1 ∈ F (d) and m | f(d/d1). By (a), d1 is a fundamental
discriminant such that d1 | d and d/d1 is a discriminant. As m | f(d/d1), from

d/d1 = ∆(d/d1)f(d/d1)2,
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we deduce that d1 | d/m2 and d/d1m
2 is a discriminant so that d1 ∈ F (d/m2)

by (a). As m | f(d/d1) we have m | f(d) by (c) so we have shown that

d1 ∈ F (d), m | f(d/d1) ⇒ m | f(d), d1 ∈ F (d/m2).

This completes the proof of Lemma 1.

Next, we recall the basic properties of generic characters (see for example
[1: Chapter 4]). Let p∗ ∈ P (d) and K ∈ H(d). For any positive integer k
coprime with p∗, which is represented by K, it is known that

(
p∗

k

)
has the

same value, so we can set

(19) γp∗(K) =
(
p∗

k

)
= ±1.

Let G ∈ G(d). It is known that for any K ∈ G, γp∗(K) has the same value,
so we can set γp∗(G) = γp∗(K). Also,

(20) γp∗(G1G2) = γp∗(G1)γp∗(G2),

for G1, G2 ∈ G(d). An important result of genus theory is the following
product formula due to Gauss (see for example [9: equation (9)]).

Lemma 2. (a) If G ∈ G(d) then with ∆ = ∆(d),

(21)
∏

p∗∈P (∆)

γp∗(G) = 1,

together with

(22) γ−4(G)γ8(G)γ−8(G) = 1 if d ≡ 0 (mod 32).

(b) Moreover , if δp∗ = ±1 for each p∗ ∈ P (d) and
∏
p∗∈P (∆) δp∗ = 1,

together with
δ−4δ8δ−8 = 1 if d ≡ 0 (mod 32),

then there exists a unique genus G ∈ G(d) with

γp∗(G) = δp∗ for each p∗ ∈ P (d).

For d1 ∈ F (d), we set

(23) γd1(G) =
∏

p∗∈P (d1)

γp∗(G) = ±1.

We let vp(n) denote the exponent of the highest power of the prime p
dividing n. Following [13] we define for all discriminants d the derived genus
Gm ∈ G(d/(m, f)2) of G ∈ G(d), where m is a positive integer all of whose
prime factors p divide d and satisfy

(24) p -∆ ⇒ vp(m) ≤ vp(f).

We begin with the case when m is a prime.
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Lemma 3. Let p be a prime with p | d, and let G ∈ G(d). Then there is
a unique genus

(25) Gp ∈
{
G(d/p2) if p | f ,
G(d) if p - f ,

such that in the case p | f ,

(26) γq∗(Gp) = γq∗(G) for all q∗ ∈ P (d/p2),

and in the case p - f , for every q∗ ∈ P (d) with p - q∗,

γq∗(Gp) =
(
q∗

p

)
γq∗(G),

and , for the unique q∗ ∈ P (d) with p | q∗,

γq∗(Gp) =
(
d/q∗

p

)
γq∗(G) =

(
∆/q∗

p

)
γq∗(G).

Proof. The proof is exactly the same as the proof of Proposition 3.1 in
[13] for the case d < 0.

Next, we define Gpi for p | d and i ≥ 0. We set G1 = G. By (25), we
define successively

(27) Gpi = (Gpi−1)p ∈ G(d/p2i) for i = 1, . . . , vp(f).

If in addition p |∆, as p - f/pvp(f), we define successively

(28) Gpi = (Gpi−1)p ∈ G(d/p2vp(f)), i = 1 + vp(f), . . .

Thus, for any p | d, we have defined Gpi ∈ G(d/(pi, f)2) for any i ≥ 0 if p |∆
and for 0 ≤ i ≤ vp(f) if p -∆. For m = pα1

1 . . . pαrr satisfying (24), we define

(29) Gm = (. . . ((Gpα1
1

)pα2
2

) . . .)pαrr ∈ G(d/(m, f)2).

It is easily checked that the order of the pi’s does not matter.

Lemma 4. (a) Let p be a prime with p | d. Let d1 ∈ F (d/(p, f)2). Then,
for any G ∈ G(d), we have

γd1(Gp) =





γd1(G) if p | f ,
(
d1

p

)
γd1(G) if p - f , p - d1,

(
d/d1

p

)
γd1(G) if p - f , p | d1.

(b) If m is a positive integer with m | f , G ∈ G(d) and d1 ∈ F (d/m2)
then γd1(Gm) = γd1(G).

Proof. The proof is exactly the same as the proof of Lemma 3.1 in [13]
for the case d < 0.
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Following [13] we define a prime p to be a null prime relative to n and d
if

(30) vp(n) ≡ 1 (mod 2), vp(n) < 2vp(f).

We denote the set of all such null primes by Null(n, d).

Lemma 5. If Null(n, d) 6= ∅, then RK(n, d) = 0 for each K ∈ H(d).

Proof. The proof is exactly the same as the proof of Proposition 4.1 in
[13] for the case d < 0.

Next, as in [13: Section 4], we introduce three positive integers M , U
and Q:

M = M(n, d) is the largest integer such that M 2 |n and M | f,(31)

U = U(n, d) =
∏

p|d
p - f

pvp(n),(32)

Q = Q(n, d) = U(n/M2, d/M2) =
∏

p|d/M2

p - f/M

pvp(n/M2).(33)

Lemma 6. (a) If Null(n, d) = ∅ then

(n/M2, f/M) = 1 and (n/M2Q, d/M2) = 1.

(b) (n, f) = 1 if and only if Null(n, d) = ∅ and M = 1.

Proof. The proof is the same as the proof of Lemma 4.1 in [13].

For d1 ∈ F (d) and (n, f) = 1, we set

(34) S(n, d1, d/d1) =
∑

µν=n

(
d1

µ

)(
d/d1

ν

)
,

where µ and ν run through all positive integers with µν = n.

Lemma 7. Let (n, f) = 1 and let p be a prime dividing both n and d.
Then, for G ∈ G(d), we have

∑

d1∈F (d)

γd1(G)S(n, d1, d/d1) =
∑

d1∈F (d)

γd1(Gp)S(n/p, d1, d/d1).

Proof. The proof is the same as that of Lemma 5.1 in [13].

Lemma 8. Let (n, f) = 1. Then, for G ∈ G(d), we have
∑

d1∈F (d)

γd1(G)S(n, d1, d/d1) =
∑

d1∈F (d)

γd1(GU )S(n/U, d1, d/d1),

where U is defined in (32).
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Proof. This follows by repeatedly applying Lemma 7 to all the primes
dividing the integer U .

Lemma 9. Let p be a prime with p | d, p - f . Let K ∈ H(d). Then

(a) K contains a form (a, b, cp) with p - ac, p | b;
(b) the mapping φp : H(d) → H(d) given by φp([a, b, cp]) = [ap, b, c],

where (a, b, cp) is as in (a), is a bijection;
(c) if G ∈ G(d) and K ∈ G then φp(K) ∈ Gp.

Proof. The proof is the same as the proof of Lemma 7.1 in [13].

Lemma 10. Let p be a prime with p |n, p | d and p - f . Then, for K ∈
H(d), we have RK(n, d) = Rφp(K)(n/p, d).

Proof. Let (a, b, cp)∈K with p - ac, p | b. Then (ap, b, c)∈φp(K). We set

S = {(x, y) ∈ Z2 : ax2 + bxy + cpy2 = n, (x, y) primary},
T = {(X,Y ) ∈ Z2 : apX2 + bXY + cY 2 = n/p, (X,Y ) primary}.

It is easily checked that (X,Y ) 7→ (pX, Y ) is a bijection from T to S.

Lemma 11. Let p be a prime with p |n, p | d and p - f . Then, for G ∈
G(d), we have RG(n, d) = RGp(n/p, d).

Proof. We have

RG(n, d) =
∑

K∈G
RK(n, d) =

∑

K∈G
Rφp(K)(n/p, d)

=
∑

K′∈Gp
RK′(n/p, d) = RGp(n/p, d),

by Lemmas 9 and 10.

We are now ready to prove our first reduction formula.

Proposition 1. For G ∈ G(d), we have

RG(n, d) = RGU (n/U, d)

where U = U(n, d) is defined in (32).

Proof. This follows from Lemma 11 by repeatedly applying it to all the
primes dividing U .

Lemma 12. Let p | f , K ∈ H(d) and let l be a positive integer. Then

(a) K contains a form (a, b, c) with p | b, p2 | c and (a, pl) = 1;
(b) the mapping θp : H(d)→H(d/p2) given by θp([a, b, c])=[a, b/p, c/p2],

where (a, b, c) is as in (a), is a surjective homomorphism;
(c) if G ∈ G(d) and K ∈ G then θp(K) ∈ Gp;
(d) the mapping θ̂p : G(d)→ G(d/p2) given by θ̂p(G) = Gp is a surjective

homomorphism.
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Proof. The proof is exactly the same as that of Lemma 6.1 in [13].

From this point on we assume that d > 0.

Lemma 13. Let d > 0, [a, b, c] ∈ H(d) and let m be a positive integer.
Set

S =
{

(x, y) ∈ Z2 : ax2 + bxy + cy2 = n, 2ax+ (b−
√
d)y > 0,

1 ≤
∣∣∣∣
2ax+ (b+

√
d)y

2ax+ (b−
√
d)y

∣∣∣∣ < ε2
}
,

T =
{

(X,Y ) ∈ Z2 : aX2 + bXY + cY 2 = n, 2aX + (b−
√
d)Y > 0,

ε2m ≤
∣∣∣∣
2aX + (b+

√
d)Y

2aX + (b−
√
d)Y

∣∣∣∣ < ε2m+2
}
,

where ε = ε(d) is defined in (3). Then cardS = cardT .

Proof. Let

ε′ =
1
ε

=
x0 − y0

√
d

2
and εm =

t+ u
√
d

2
,

where t and u are rational numbers. Then

ε′
m =

t− u
√
d

2
.

Adding we obtain t = εm + ε′m. As ε is an algebraic integer, so are ε′, εm

and ε′m. Hence t is an algebraic integer and thus, as it is rational, it must
be an integer. Similarly

u = y0
εm − ε′m
ε− ε′

is an algebraic integer, and thus as it is rational, it must be an integer.
Finally, as εε′ = 1, we deduce that the integers t and u satisfy t2− du2 = 4.

We define a map from S to T by (x, y) 7→ (X,Y ), where
(
X

Y

)
=
(

(t− bu)/2 −cu
au (t+ bu)/2

)(
x

y

)
.

Easy calculations show that

ax2 + bxy + cy2 = aX2 + bXY + cY 2,

2aX + (b+
√
d)Y = εm(2ax+ (b+

√
d)y).

Hence
2aX + (b−

√
d)Y = ε′m(2ax+ (b−

√
d)y).

It is now easily verified that the map (x, y) 7→ (X,Y ) is a bijection.
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Lemma 14. Let d > 0. Let p be a prime with p |M , where M is defined
in (31). Then, for any K ∈ H(d), we have

RK(n, d) =
log ε(d)

log ε(d/p2)
Rθp(K)(n/p

2, d/p2).

Proof. We begin by choosing (a, b, c) ∈ K with p - a, p | b and p2 | c so
that θp(K) = [a, b/p, c/p2]. Then we set

S =
{

(x, y) ∈ Z2 : ax2 + bxy + cy2 = n, 2ax+ (b−
√
d)y > 0,

1 ≤
∣∣∣∣
2ax+ (b+

√
d)y

2ax+ (b−
√
d)y

∣∣∣∣ < ε(d)2
}
,

T =
{

(X,Y ) ∈ Z2 :
n

p2 = aX2 +
bXY

p
+
cY 2

p2 , 2aX + (b−
√
d)
Y

p
> 0,

1 ≤
∣∣∣∣
2aX + (b+

√
d)Y/p

2aX + (b−
√
d)Y/p

∣∣∣∣ < ε(d)2
}
,

V =
{

(X,Y ) ∈ Z2 :
n

p2 = aX2 +
bXY

p
+
cY 2

p2 , 2aX + (b−
√
d)
Y

p
> 0,

1 ≤
∣∣∣∣
2aX + (b+

√
d)Y/p

2aX + (b−
√
d)Y/p

∣∣∣∣ < ε(d/p2)2
}
.

All solutions in integers to x2 − dy2 = 4 are given by

x+ y
√
d

2
= ±εm, m ∈ Z,

(see for example [12: Theorem 4.4, p. 281]). As x = x0, y = py0 is an integral
solution of x2 − (d/p2)y2 = 4, we have

ε(d) =
x0 + y0

√
d

2
=
x+ (y/p)

√
d

2
= ±ε(d/p2)m

for some m ∈ Z. Moreover as ε(d) and ε(d/p2) are both > 1 we have
ε(d) = ε(d/p2)m and m is a positive integer. The map from T to S given by
(X,Y ) 7→ (pX, Y ) is easily seen to be a bijection. Thus

RK(n, d) = cardS = cardT = m cardV =
log ε(d)

log ε(d/p2)
Rθp(K)(n/p

2, d/p2),

by Lemma 13.

Our next lemma is the analogue of [13: Lemma 6.3] for the case d > 0.
As the proof in [13] is fairly brief, we provide all the details here.
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Lemma 15. Let d > 0. Let p be a prime with p |M . Then, for G ∈ G(d),
we have

RG(n, d) =
log ε(d)

log ε(d/p2)
· h(d)/2t(d)

h(d/p2)/2t(d/p2)
RGp(n/p2, d/p2).

Proof. Let G ∈ G(d) and L ∈ Gp. As G ∈ G(d) = H(d)/H2(d) there
exists a class K1 ∈ H(d) such that G = K1H

2(d). Thus K1 ∈ G and so
θp(K1) ∈ Gp. Hence

Gp = θp(K1)H2(d/p2).

As L ∈ Gp there exists L1 ∈ H(d/p2) such that L = θp(K1)L2
1. Further, as

the homomorphism θp : H(d) → H(d/p2) is surjective, there exists a class
K2 ∈ H(d) such that θp(K2) = L1. Set A = K1K

2
2 so that A ∈ G and

θp(A) = θp(K1K
2
2 ) = θp(K1)θp(K2)2 = θp(K1)L2

1 = L.

Also G = AH2(d). Set
NG(L) =

∑

K∈G
θp(K)=L

1.

Then

NG(L) = |{K ∈ G : θp(K) = L}| = |{K ∈ H(d) : θp(K) = L} ∩G|
= |A ker θp ∩G| = |A ker θp ∩ AH2(d)|
= |A(ker θp ∩H2(d))| = |ker θp ∩H2(d)|,

so that NG(L) is independent of G and L. Hence

|G| =
∑

K∈G
1 =

∑

K∈G
θp(K)∈Gp

1 =
∑

L∈Gp

∑

K∈G
θp(K)=L

1

=
∑

L∈Gp
NG(L) = NG(L)

∑

L∈Gp
1 = NG(L)|Gp|,

so that

NG(L) =
|G|
|Gp|

=
h(d)/2t(d)

h(d/p2)/2t(d/p2)
.

Hence we have

RG(n, d) =
∑

K∈G
RK(n, d)

=
log ε(d)

log ε(d/p2)

∑

K∈G
Rθp(K)(n/p

2, d/p2) (by Lemma 14)

=
log ε(d)

log ε(d/p2)

∑

L∈Gp

∑

K∈G
θp(K)=L

Rθp(K)(n/p
2, d/p2)
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=
log ε(d)

log ε(d/p2)

∑

L∈Gp

∑

K∈G
θp(K)=L

RL(n/p2, d/p2)

=
log ε(d)

log ε(d/p2)

∑

L∈Gp
RL(n/p2, d/p2)

∑

K∈G
θp(K)=L

1

=
log ε(d)

log ε(d/p2)

∑

L∈Gp
RL(n/p2, d/p2)NG(L)

=
log ε(d)

log ε(d/p2)
· h(d)/2t(d)

h(d/p2)/2t(d/p2)

∑

L∈Gp
RL(n/p2, d/p2)

=
log ε(d)

log ε(d/p2)
· h(d)/2t(d)

h(d/p2)/2t(d/p2)
RGp(n/p2, d/p2),

as asserted.

We now give our second reduction formula.

Proposition 2. For G ∈ G(d), d > 0, we have

RG(n, d) =
1

2t(d)−t(d/M2)
· log ε(d)

log ε(d/M2)
· h(d)
h(d/M2)

RGM (n/M2, d/M2).

Proof. This follows from Lemma 15 by applying it to all the primes
dividing the integer M .

We now set

(35) N(n, d) =
∑

K∈H(d)

RK(n, d).

For d > 0 Dirichlet (see for example [12: Theorem 4.1, p. 307]) has shown
that

N(n, d) =
∑

ν|n

(
d

ν

)
if (n, d) = 1.

Following the proof of Theorem 8.3 in [13] and using Dirichlet’s result, we
obtain

Proposition 3. Let d > 0. If (n, d) = 1 and G ∈ G(d) then

RG(n, d) =
1

2t(d)+1

∑

d1∈F (d)

γd1(G)S(n, d1, d/d1).

We are now ready to prove Theorem 1.
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Theorem 1. Let G ∈ G(d), d > 0. If Null(n, d) = ∅ then

RG(n, d) =
log ε(d)

log ε(d/M2)
· h(d)
h(d/M2)

· 1
2t(d)+1

×
∑

d1∈F (d/M2)

γd1(G)S(n/M2, d1, d/M
2d1).

If Null(n, d) 6= ∅ then RG(n, d) = 0.

Proof. Suppose Null(n, d) = ∅. By Propositions 1 and 2, we have

RG(n, d) =
1

2t(d)−t(d/M2)
· log ε(d)

log ε(d/M2)
· h(d)
h(d/M2)

RGM (n/M2, d/M2)

=
1

2t(d)−t(d/M2)
· log ε(d)

log ε(d/M2)
· h(d)
h(d/M2)

RGMQ(n/M2Q, d/M2)

as U(n/M2, d/M2) = Q by (33). By Lemma 6(a) we have
(

n

M2Q
,
d

M2

)
= 1 and

(
n

M2 ,
f

M

)
= 1,

so that, by Proposition 3, Lemma 8 and Lemma 4(b), we have

RG(n, d) =
1

2t(d)−t(d/M2)
· log ε(d)

log ε(d/M2)
· h(d)
h(d/M2)

· 1
2t(d/M2)+1

×
∑

d1∈F (d/M2)

γd1(GMQ)S(n/M2Q, d1, d/M
2d1)

=
1

2t(d)+1
· log ε(d)

log ε(d/M2)
· h(d)
h(d/M2)

×
∑

d1∈F (d/M2)

γd1(GM )S(n/M2, d1, d/M
2d1)

=
1

2t(d)+1
· log ε(d)

log ε(d/M2)
· h(d)
h(d/M2)

×
∑

d1∈F (d/M2)

γd1(G)S(n/M2, d1, d/M
2d1).

The second assertion of Theorem 1 follows from Lemma 5.

3. The restricted Epstein zeta function ZQ(s). Proof of The-
orem 2. Let a, b and c be integers with a > 0, gcd(a, b, c) = 1 and
b2−4ac = d, where d is a positive nonsquare discriminant. We set Q(x, y) =
ax2+bxy+cy2 so thatQ is an indefinite, primitive, integral, binary quadratic
form of discriminant d. Let ε = ε(d) be given by (3). For s > 1, we define
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the restricted Epstein zeta function ZQ(s) by

(36) ZQ(s) =
∞∑

x,y=−∞
Q(x,y)>0

2ax+(b−
√
d)y>0

1≤
∣∣ 2ax+(b+

√
d)y

2ax+(b−
√
d)y

∣∣<ε2

1
Q(x, y)s

.

We begin by showing that the series in (36) defining ZQ(s) converges for
s > 1. To do this, we examine the three parts of the series (36) corresponding
to y = 0, y > 0 and y < 0, and show that each converges for s > 1.

The part corresponding to y = 0 is clearly

(37)
∞∑

x=1

1
Q(x, 0)s

=
∞∑

x=1

1
(ax2)s

= a−sζ(2s)

for s > 1/2.
For y > 0 we show that the conditions in the definition of ZQ(s) are

satisfied if and only if 2ax > λy, where

(38) λ = −b+
√
d+ 2

√
d/(ε2 − 1).

Set
E = 2ax+ (b+

√
d)y, E′ = 2ax+ (b−

√
d)y.

The summation conditions are

EE′ > 0, E′ > 0, 1 ≤ |E/E′| < ε2,

which are equivalent to

E > 0, E′ > 0, E′ ≤ E < ε2E′.

For y > 0 we have E > E′ so these conditions are equivalent to

E′ > 0, E < ε2E′.

The second of these inequalities is equivalent to (as ε > 1)

2ax >
(
−b+

√
d+

2
√
d

ε2 − 1

)
y.

Moreover if this inequality holds then 2ax > (−b +
√
d)y so that E′ > 0.

Hence the part corresponding to y > 0 is

(39)
∞∑

y=1

∑

x>λ1y

1
Q(x, y)s

,

where

(40) λ1 = λ/(2a).
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If y < 0, a short calculation similar to the above shows that the condi-
tions in the definition of ZQ(s) are never satisfied. Thus we must examine
the convergence of

(41)
∞∑

y=1

∑

x>λ1y

1
Q(x, y)s

=
∞∑

y=1

y−2s
∑

x>λ1y

Q(xy−1, 1)−s.

To evaluate the inner sum in (41), we apply the Euler–Maclaurin summation
formula. For s > 1/2, y > 0, we obtain

(42)
∑

x>λ1y

Q(xy−1, 1)−s = P (λ1y)Q(λ1, 1)−s +
∞�

λ1y

Q(xy−1, 1)−s dx

+
∞�

λ1y

(−s)Q(xy−1, 1)−s−1(2axy−2 + by−1)P (x) dx

= y

∞�

λ1

Q(t, 1)−s dt− s
∞�

λ1

Q(t, 1)−s−1(2at+ b)P (ty) dt

+ P (λ1y)Q(λ1, 1)−s,

where P (x) = x− [x]− 1/2. Thus, for s > 1, we have

(43)
∞∑

y=1

y−2s
∑

x>λ1y

Q(xy−1, 1)−s

= ζ(2s− 1)
∞�

λ1

Q(t, 1)−s dt+Q(λ1, 1)−s
∞∑

y=1

P (λ1y)
y2s

− s
∞∑

y=1

y−2s
∞�

λ1

(2at+ b)P (ty)
Q(t, 1)s+1 dt.

This shows that ∞∑

y=1

y−2s
∑

x>λ1y

Q(xy−1, 1)−s,

and thus the original series for ZQ(s) converges for s > 1. Putting together
(36), (37) and (43), we obtain

Lemma 16. For s > 1, we have

ZQ(s) = a−sζ(2s) + ζ(2s− 1)
∞�

λ1

Q(t, 1)−s dt+Q(λ1, 1)−s
∞∑

y=1

P (λ1y)
y2s(44)

− s
∞∑

y=1

y−2s
∞�

λ1

(2at+ b)P (ty)
Q(t, 1)s+1 dt.
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We are now ready to prove Theorem 2.

Theorem 2. Let d be a positive nonsquare discriminant. Let Q=(a, b, c)
be a primitive, integral , binary quadratic form of discriminant d with a > 0.
Let ε = 1

2 (x0 + y0
√
d) be as defined in (3). Set

α = (x0 − by0)/2, g = ay0.

Then α ∈ Z and (α, g) = 1. Define α′ ∈ Z by

αα′ ≡ 1 (mod g), 0 ≤ α′ < g.

For l = 1, . . . , [(g − 1)/2] define l∗ ∈ Z by

lα ≡ l∗ (mod g), 0 ≤ l∗ < g.

For l = 1, . . . , [(g − 1)/2] and 0 ≤ t ≤ 1 set

F (α, l, t, g) =
(t− cos(2πlα/g)) log(1− 2tε cos(2πl/g) + t2ε)

t2 − 2t cos(2πlα/g) + 1

−
2 sin(2πlα/g) tan−1

(
tε sin(2πl/g)

1− tε cos(2πl/g)

)

t2 − 2t cos(2πlα/g) + 1
.

Then

ZQ(s) =
log ε√
d
· 1
s− 1

+ CQ +O(s− 1) as s→ 1+,

where

CQ = V (d) +
π2

6a
+

log ε log a√
d

− 1√
d
WQ,

V (d) =
2γ log ε√

d
+

log ε log(εy2
0)√

d
− 1

2
√
d

∞�

0

(
log(u+ ε2)
u+ 1

− log(u+ 1)
u+ ε2

)
du

+
1√
d

1�

0

(
1

t log t
− 1
t− 1

)
log
(

1− tε
1− tε′

)
dt,

and

WQ =
1�

0

[(g−1)/2]∑

l=1

(F (α, l, t, g) + F (α′, l, t, g)) dt

− 2
[(g−1)/2]∑

l=1

(
log
(

2 sin
πl

g

)
log
(

2
∣∣∣∣sin

πlα

g

∣∣∣∣
)
−
(
π

2
− πl

g

)(
π

2
− πl∗

g

))

+
(

2
1�

0

log(1 + tε)
1 + t

dt− log2 2
)(

1 + (−1)g

2

)
.
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Proof. All the series and integrals appearing in Lemma 16 except the
series for ζ(2s− 1) regarded as functions of the complex variable s converge
uniformly on compact subsets of the region Re(s) > 1/2, and so are analytic
in this region. As s→ 1+, we have

(45)
∞�

λ1

Q(t, 1)−s dt

=
∞�

λ1

1
Q(t, 1)

dt−
(∞�

λ1

logQ(t, 1)
Q(t, 1)

dt

)
(s− 1) +O((s− 1)2).

We have Q(t, 1) = a(t+ t1)(t+ t2), where

(46) t1 =
b+
√
d

2a
, t2 =

b−
√
d

2a
.

We note that by (38) and (40), t+ t1 and t+ t2 are positive for t ≥ λ1. Using
these facts, it is easily shown that

(47)
∞�

λ1

1
Q(t, 1)

dt =
2 log ε√

d
.

Also
∞�

λ1

logQ(t, 1)
Q(t, 1)

dt

=
1

a(t1 − t2)

∞�

λ1

log(a(t+ t1)(t+ t2))
(

1
t+ t2

− 1
t+ t1

)
dt

=
1√
d

∞�

λ1

log a
(

1
t+ t2

− 1
t+ t1

)
dt

+
1√
d

∞�

λ1

log((t+ t1)(t+ t2))
(

1
t+ t2

− 1
t+ t1

)
dt

=
1√
d

∞�

0

log((t+ λ1 + t1)(t+ λ1 + t2))
(

1
t+ λ1 + t2

− 1
t+ λ1 + t1

)
dt

+
2 log a log ε√

d
.

Let

(48) λ0 =

√
d

a(ε2 − 1)
,
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so that by (38), (40) and (46), we have

(49) λ1 + t1 = ε2λ0, λ1 + t2 = λ0.

Hence
∞�

0

log((t+ λ1 + t1)(t+ λ1 + t2))
(

1
t+ λ1 + t2

− 1
t+ λ1 + t1

)
dt

=
∞�

0

log((t+ ε2λ0)(t+ λ0))
(

1
t+ λ0

− 1
t+ ε2λ0

)
dt

=
∞�

0

(
log(t+ λ0)
t+ λ0

− log(t+ ε2λ0)
t+ ε2λ0

)
dt

+
∞�

0

(
log(t+ ε2λ0)

t+ λ0
− log(t+ λ0)

t+ ε2λ0

)
dt

= 2 log ε log(ελ0) +
∞�

0

(
log(t+ ε2λ0)

t+ λ0
− log(t+ λ0)

t+ ε2λ0

)
dt

= 2 log ε log(ελ0) + 2 log ε log λ0

+
∞�

0

(
log(u+ ε2)
u+ 1

− log(u+ 1)
u+ ε2

)
du,

so that

(50)
∞�

λ1

logQ(t, 1)
Q(t, 1)

dt

=
2 log ε log(aελ2

0)√
d

+
1√
d

∞�

0

(
log(u+ ε2)
u+ 1

− log(u+ 1)
u+ ε2

)
du.

Using (45), (47) and (50), together with

a−sζ(2s) =
π2

6a
+O(s− 1),

ζ(2s− 1) =
1/2
s− 1

+ γ +O(s− 1),

Q(λ1, 1)−s
∞∑

y=1

P (λ1y)
y2s = Q(λ1, 1)−1

∞∑

y=1

P (λ1y)
y2 +O(s− 1),
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s
∞∑

y=1

y−2s
∞�

λ1

(2at+ b)P (ty)
Q(t, 1)s+1 dt =

∞∑

y=1

y−2
∞�

λ1

(2at+ b)P (ty)
Q(t, 1)2 dt+O(s− 1),

in (44), where γ denotes Euler’s constant

γ = lim
n→∞

( n∑

i=1

1
i
− logn

)
= 0.5772156649 . . . ,

we obtain

(51) ZQ(s) =
log ε√
d
· 1
s− 1

+ CQ +O(s− 1) as s→ 1+,

where

CQ =
π2

6a
+

2γ log ε√
d
− 1

2
√
d

∞�

0

(
log(u+ ε2)
u+ 1

− log(u+ 1)
u+ ε2

)
du(52)

− log ε log(aελ2
0)√

d
+Q(λ1, 1)−1

∞∑

y=1

P (λ1y)
y2

−
∞∑

y=1

y−2
∞�

λ1

(2at+ b)P (ty)
Q(t, 1)2 dt.

Set

(53) K(d) =
2γ log ε√

d
− 1

2
√
d

∞�

0

(
log(u+ ε2)
u+ 1

− log(u+ 1)
u+ ε2

)
du,

so that

CQ = K(d) +
π2

6a
− log ε log(aελ2

0)√
d

+
1

Q(λ1, 1)

∞∑

y=1

P (λ1y)
y2(54)

−
∞∑

y=1

y−2
∞�

λ1

(2at+ b)P (ty)
Q(t, 1)2 dt.

We emphasize that K(d) depends only on d and not on the form (a, b, c).
Throughout the rest of this section, we focus on transforming CQ into

the form stated in Theorem 2. By (42) and (47), we have for y > 0,

∑

x>λ1y

Q(xy−1, 1)−1 = y

∞�

λ1

1
Q(t, 1)

dt−
∞�

λ1

(2at+ b)P (ty)
Q(t, 1)2 dt+

P (λ1y)
Q(λ1, 1)

=
2y log ε√

d
−
∞�

λ1

(2at+ b)P (ty)
Q(t, 1)2 dt+

P (λ1y)
Q(λ1, 1)

.
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Hence
∞∑

y=1

y−2
( ∑

x>λ1y

Q(xy−1, 1)−1 − 2y log ε√
d

)

=
∞∑

y=1

y−2
(
P (λ1y)
Q(λ1, 1)

−
∞�

λ1

(2at+ b)P (ty)
Q(t, 1)2 dt

)
.

Using this in (54) gives

CQ = K(d) +
π2

6a
− log ε log(aελ2

0)√
d

(55)

+
∞∑

y=1

y−2
( ∑

x>λ1y

Q(xy−1, 1)−1 − 2y log ε√
d

)
.

By (46), we have, for y > 0,

(56)
∑

x>λ1y

Q(xy−1, 1)−1 =
∑

x>λ1y

1
a(xy−1 + t1)(xy−1 + t2)

=
y√
d

∞∑

x=1+[λ1y]

(
1

x+ t2y
− 1
x+ t1y

)

=
y√
d

∞∑

m=0

(
1

m+ 1 + [λ1y] + t2y
− 1
m+ 1 + [λ1y] + t1y

)
.

Using (49), we note that 1 + [λ1y] + t2y > (λ1 + t2)y = λ0y > 0 and
1 + [λ1y] + t1y > (λ1 + t1)y = λ0ε

2y > 0. We recall the formula (see for
example [10: formula 8.362, p. 952]), which is valid for x > 0,

−ψ(x) =
1
x

+ γ +
∞∑

m=1

(
1

x+m
− 1
m

)
,

where ψ(x) = Γ ′(x)/Γ (x). Hence, for x1 > 0, x2 > 0, we have

ψ(x1)− ψ(x2) =
∞∑

m=0

(
1

m+ x2
− 1
m+ x1

)
.

Using this in (56), we obtain, for y > 0,

(57)
∑

x>λ1y

Q(xy−1, 1)−1 =
y√
d

(ψ(1 + [λ1y] + t1y)− ψ(1 + [λ1y] + t2y)).

Hence, by (55), we have

CQ = K(d) +
π2

6a
− log ε log(aελ2

0)√
d

(58)

+
1√
d

∞∑

y=1

1
y

(ψ(1 + [λ1y] + t1y)− ψ(1 + [λ1y] + t2y)− log ε2).
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As in the proof of Lemma 13, we set

(59) ε′ = (x0 − y0

√
d)/2,

so that

(60) εε′ = 1

as x2
0 − dy2

0 = 4. Hence ε′(ε2 − 1) = ε− ε′ = y0
√
d, so that by (48),

(61) λ0 =

√
d

a(ε2 − 1)
=

ε′

ay0
,

and by (38),

λ = −b+
√
d+

2
√
d

ε2 − 1
= −b+

ε− ε′
y0

+
2ε′

y0
= −b+

ε+ ε′

y0
.

Hence

(62) λ = −b+ x0/y0

and by (40),

(63) λ1 = λ/(2a) = α/g,

where

(64) g = g(a, d) = ay0, α = α(b, d) = (x0 − by0)/2.

Since b2 − 4ac = d and x2
0 − dy2

0 = 4, we have

x2
0 − b2y2

0 = 4− 4acy2
0 ≡ 0 (mod 4),

so that x0 ≡ by0 (mod 2). Hence α is an integer. In fact

(65) (α, g) = 1,

since

α

(
x0 + by0

2

)
+ gcy0 = 1.

We have, by (40), (46), (62), (3) and (64),

(66) λ1 + t1 =
λ+ b+

√
d

2a
=
x0/y0 +

√
d

2a
=
ε

g
,

and similarly

(67) λ1 + t2 = ε′/g.

For any positive integer y, we let

(68) ry = g(λ1y − [λ1y]).

We note that ry is an integer since ry = αy − g[λ1y] by (63). Also

(69) 0 ≤ ry < g.
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For x1 > 0 and x2 > 0 we have

log x1 − log x2 =
x1�

x2

1
t
dt =

x1�

x2

∞�

0

e−tu du dt

so that

log x1 − log x2 =
∞�

0

x1�

x2

e−tu dt du =
∞�

0

e−x2u − e−x1u

u
du.

On using the substitution t = e−u, we obtain

(70) log x1 − log x2 =
1�

0

tx1 − tx2

t log t
dt.

Equation 3.311(6) in [10] gives

ψ(x) + γ =
∞�

0

e−u − e−xu
1− e−u du =

1�

0

1− tx−1

1− t dt, x > 0.

Choosing x = 1 + x1 > 0 and x = 1 + x2 > 0, and subtracting, we obtain

(71) ψ(1 + x1)− ψ(1 + x2) =
1�

0

tx2 − tx1

1− t dt.

Appealing to (60) and (66)–(71), we obtain
∞∑

y=1

1
y

(ψ(1 + [λ1y] + t1y)− ψ(1 + [λ1y] + t2y)− log ε2)

=
∞∑

y=1

1
y

(ψ(1 + (λ1 + t1)y − (λ1y − [λ1y]))

− ψ(1 + (λ1 + t2)y − (λ1y − [λ1y]))− log ε2)

=
∞∑

y=1

1
y

(
ψ

(
1 +

εy

g
− ry

g

)
− ψ

(
1 +

ε′y
g
− ry

g

)
− (log(εy)− log(ε′y))

)

=
∞∑

y=1

1
y

( 1�

0

t(ε
′y−ry)/g − t(εy−ry)/g

1− t dt−
1�

0

tεy − tε′y
t log t

dt

)

=
∞∑

y=1

1
y

(
g

1�

0

tε
′y − tεy
1− tg tg−1−ry dt−

1�

0

tεy − tε′y
t log t

dt

)

=
1�

0

∞∑

y=1

tεy − tε′y
ty

(
− 1

log t
+
gtg−ry

tg − 1

)
dt,
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so that

(72)
∞∑

y=1

1
y

(ψ(1 + [λ1y] + t1y)− ψ(1 + [λ1y] + t2y)− log ε2)

=
1�

0

(
1

t log t
log
(

1− tε
1− tε′

)
+ g

∞∑

y=1

tεy − tε′y
y(tg − 1)

tg−ry−1
)
dt.

Let 0 < t < 1. We have
∞∑

y=1

g

y
· t
εy − tε′y
tg − 1

tg−ry−1 =
g−1∑

k=0

∑

ry=k

tεy − tε′y
y

· gt
g−1−k

tg − 1
(73)

=
g−1∑

k=0

∑

αy≡k (mod g)

tεy − tε′y
y

· gt
g−k−1

tg − 1
.

Let

(74) θ = e2πi/g .

Then

(75)
gtg−k−1

tg − 1
=

gtg−k−1

(t− θ) · · · (t− θg) =
g∑

l=1

Al,k
t− θl ,

where Al,k = gθ−l(k+1)/
∏
j 6=l(θ

l − θj). But, for 1 ≤ l ≤ g, we have

∏

j 6=l
(θl − θj) = θl(g−1)

∏

j 6=l
(1− θj−l) = θ−l

g−1∏

i=1

(1− θi) = gθ−l,

so that

(76) Al,k = θ−lk.

Thus, by (73), (75) and (76), we have
∞∑

y=1

g

y
· t
εy − tε′y
tg − 1

tg−ry−1 =
g−1∑

k=0

∑

αy≡k (mod g)

tεy − tε′y
y

g∑

l=1

θ−lk

t− θl

=
g∑

l=1

1
t− θl

g−1∑

k=0

∑

αy≡k (mod g)

tεy − tε′y
y

θ−lk

=
g∑

l=1

1
t− θl

g−1∑

k=0

∑

αy≡k (mod g)

tεy − tε′y
y

θ−lαy

=
g∑

l=1

1
t− θl

∞∑

y=1

tεy − tε′y
y

θ−lαy
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= −
g∑

l=1

1
t− θl (log(1− θ−lαtε)− log(1− θ−lαtε′)),

where the principal values of the logarithms are taken. Using this in (72)
gives

(77)
∞∑

y=1

1
y

(ψ(1 + [λ1y] + t1y)− ψ(1 + [λ1y] + t2y)− log ε2)

=
1�

0

(
1

t log t
log
(

1− tε
1− tε′

)

−
g∑

l=1

1
t− θl (log(1− θ−lαtε)− log(1− θ−lαtε′))

)
dt

=
1�

0

(
1

t log t
− 1
t− 1

)
log
(

1− tε
1− tε′

)
dt

−
1�

0

g−1∑

l=1

1
t− θl (log(1− θ−lαtε)− log(1− θ−lαtε′)) dt.

For 1 ≤ l ≤ g − 1, we have θl 6= 1, θ−lα 6= 1 (by (65)), and

(78)
1�

0

1
t− θl log(1− θ−lαtε′) dt = −θ−l

1�

0

1
1− θ−lt log(1− θ−lαtε′) dt

= [log(1− θ−lαtε′) log(1− θ−lt)]10 −
1�

0

log(1− θ−lt)
1− θ−lαtε′ (−θ−lα)ε′tε

′−1 dt

= log(1− θ−lα) log(1− θ−l)−
1�

0

log(1− θ−ltε)
t− θlα dt.

Hence, by (78), (77), (58), (61), (60) and (53), we obtain

(79) CQ = V (d) +
π2

6a
+

log ε log a√
d

− 1√
d
WQ,

where V (d) is defined in the statement of Theorem 2 and

WQ =
g−1∑

l=1

( 1�

0

log(1− θ−lαtε)
t− θl dt+

1�

0

log(1− θ−ltε)
t− θlα dt

)
(80)

−
g−1∑

l=1

log(1− θ−lα) log(1− θ−l).
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We emphasize that V (d) depends only on d and not on the form (a, b, c).
Since (α, g) = 1, we may choose an integer α′ such that

(81) αα′ ≡ 1 (mod g).

Changing the variable from l to lα′ in the first sum in (80), we obtain

WQ =
g−1∑

l=1

1�

0

log(1− θ−ltε)
(

1
t− θlα′ +

1
t− θlα

)
dt(82)

−
g−1∑

l=1

log(1− θ−lα) log(1− θ−l)

= S1(α) + S1(α′)−
g−1∑

l=1

log(1− θ−lα) log(1− θ−l),

where

(83) S1(α) =
g−1∑

l=1

1�

0

log(1− θ−ltε)
t− θlα dt.

We set

(84) F (α, l, t, g) =
log(1− θ−ltε)

t− θlα +
log(1− θltε)
t− θ−lα .

We first consider the case when g is odd. Let g = 2m+ 1 where m ≥ 1. We
note that WQ = 0 if g = 1. Then

S1(α) =
2m∑

l=1

1�

0

log(1− θ−ltε)
t− θlα dt

=
1�

0

( m∑

l=1

log(1− θ−ltε)
t− θlα +

2m∑

l=m+1

log(1− θ2m+1−ltε)
t− θ−(2m+1−l)α

)
dt

=
1�

0

m∑

l=1

(
log(1− θ−ltε)

t− θlα +
log(1− θltε)
t− θ−lα

)
dt

=
1�

0

m∑

l=1

F (α, l, t, g) dt.

Similarly we have
g−1∑

l=1

log(1− θ−lα) log(1− θ−l)

=
m∑

l=1

(log(1− θ−lα) log(1− θ−l) + log(1− θlα) log(1− θl)).
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Hence, by (82), we have

WQ =
1�

0

[(g−1)/2]∑

l=1

(F (α, l, t, g) + F (α′, l, t, g)) dt

−
[(g−1)/2]∑

l=1

(log(1− θ−lα) log(1− θ−l) + log(1− θlα) log(1− θl)).

Similarly, for g even, we obtain

WQ =
1�

0

[(g−1)/2]∑

l=1

(F (α, l, t, g) + F (α′, l, t, g)) dt+ 2
1�

0

log(1 + tε)
1 + t

dt

−
[(g−1)/2]∑

l=1

(log(1− θ−lα) log(1− θ−l) + log(1− θlα) log(1− θl))− log2 2.

Thus, for all g, we have

WQ =
1�

0

[(g−1)/2]∑

l=1

(F (α, l, t, g) + F (α′, l, t, g)) dt(85)

−
[(g−1)/2]∑

l=1

(log(1− θ−lα) log(1− θ−l) + log(1− θlα) log(1− θl))

+
(

2
1�

0

log(1 + tε)
1 + t

dt− log2 2
)

1 + (−1)g

2
.

Explicitly calculating the logarithms occurring in (84), we obtain, after some
simplification,

F (α, l, t, g) =
(t− cos(2πlα/g)) log(1− 2tε cos(2πl/g) + t2ε)

t2 − 2t cos(2πlα/g) + 1
(86)

−
2 sin(2πlα/g) tan−1

(
tε sin(2πl/g)

1− tε cos(2πl/g)

)

t2 − 2t cos(2πlα/g) + 1
,

for 1 ≤ l ≤ [(g − 1)/2], 0 ≤ t ≤ 1. Similarly, for 1 ≤ l ≤ [(g − 1)/2], we
obtain

log(1− θ−lα) log(1− θ−l) + log(1− θlα) log(1− θl)

= 2
(

log
(

2 sin
πl

g

)
log
(

2
∣∣∣∣sin

πlα

g

∣∣∣∣
)
−
(
π

2
− πl

g

)
tan−1

(
cot

πlα

g

))
.

Let

(87) lα ≡ l∗ (mod g),
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where 0 ≤ l∗ < g. Then

tan−1
(

cot
πlα

g

)
=
π

2
− πl∗

g
.

Thus our final formula for WQ is

WQ =
1�

0

[(g−1)/2]∑

l=1

(F (α, l, t, g) + F (α′, l, t, g)) dt(88)

− 2
[(g−1)/2]∑

l=1

(
log
(

2 sin
πl

g

)
log
(

2
∣∣∣∣sin

πlα

g

∣∣∣∣
)

−
(
π

2
− πl

g

)(
π

2
− πl∗

g

))

+
(

2
1�

0

log(1 + tε)
1 + t

dt− log2 2
)(

1 + (−1)g

2

)
.

This completes our proof of Theorem 2.

4. Behaviour of
∑∞
n=1RG(n, d)/ns near s = 1. Proofs of Theo-

rems 3 and 4. Let K ∈ H(d), where d is a positive nonsquare discriminant,
and let Q = (a, b, c) ∈ K with a > 0. For s > 1 we have

(89) ZQ(s) =
∞∑

n=1

RQ(n, d)
ns

=
∞∑

n=1

RK(n, d)
ns

.

Thus, for G ∈ G(d), we see that

(90)
∞∑

n=1

RG(n, d)
ns

=
∑

K∈G

∞∑

n=1

RK(n, d)
ns

converges for s > 1. We now evaluate the Dirichlet series on the left hand
side of (90) explicitly using the formula for RG(n, d) given in Theorem 1.
We prove

Theorem 3. Let G ∈ G(d). For s > 1, we have
∞∑

n=1

RG(n, d)
ns

=
h(d) log ε(d)

2t(d)+1

∑

m|f

1
log ε(d/m2)h(d/m2)

· 1
m2s

∑

d1∈F (d/m2)

γd1(G)

×
∏

p|f/m

(
1−

(
d1

p

)
p−s
)(

1−
(
∆(d/d1)

p

)
p−s
)
L(s, d1)L(s,∆(d/d1)),
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where the Dirichlet L-series L(s, d) is defined for s > 0 by

L(s, d) =
∞∑

n=1

(
d
n

)

ns
.

Proof. By Theorem 1, we have

(91)
∞∑

n=1

RG(n, d)
ns

=
∞∑

n=1
Null(n,d)=∅

1
ns
· log ε(d)

log ε(d/M(n, d)2)
· h(d)
h(d/M(n, d)2)

· 1
2t(d)+1

×
∑

d1∈F (d/M(n,d)2)

γd1(G)S(n/M(n, d)2, d1, d/M(n, d)2d1)

=
h(d) log ε(d)

2t(d)+1

∑

m|f

1
log ε(d/m2)h(d/m2)

∑

d1∈F (d/m2)

γd1(G)

×
∞∑

n=1
Null(n,d)=∅
M(n,d)=m

S(n/m2, d1, d/m
2d1)

ns
.

For m2 |n and m | f it is easy to check that

Null(n, d) = ∅ ⇔ Null(n/m2, d/m2) = ∅,
M(n, d) = m ⇔ M(n/m2, d/m2) = 1.

Hence for m | f we have
∞∑

n=1
Null(n,d)=∅
M(n,d)=m

S(n/m2, d1, d/m
2d1)

ns
=

∞∑

n=1
m2|n

Null(n,d)=∅
M(n,d)=m

S(n/m2, d1, d/m
2d1)

ns

=
∞∑

n=1
m2|n

Null(n/m2,d/m2)=∅
M(n/m2,d/m2)=1

S(n/m2, d1, d/m
2d1)

ns

=
∞∑

n=1
m2|n

(n/m2,f/m)=1

S(n/m2, d1, d/m
2d1)

ns
(by Lemma 6)
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=
∞∑

N=1
(N,f/m)=1

S(N, d1, d/m
2d1)

(m2N)s

= m−2s
∞∑

N=1
(N,f/m)=1

1
Ns

∑

µν=N

(
d1

µ

)(
d/m2d1

ν

)

= m−2s
∑

(µ,f/m)=1

1
µs

(
d1

µ

) ∑

(ν,f/m)=1

1
νs

(
d/m2d1

ν

)
.

As d1 ∈ F (d/m2), by Lemma 1(d) we have

f(d2) | f/m, where d2 =
d/m2

d1
.

Thus for (ν, f/m) = 1 we have (ν, f(d2)) = 1 so that
(
d/m2d1

ν

)
=
(
d2

ν

)
=
(
∆(d2)f(d2)2

ν

)
=
(
∆(d2)
ν

)

=
(
∆(d2m

2)
ν

)
=
(
∆(d/d1)

ν

)
.

Hence
∞∑

n=1
Null(n,d)=∅
M(n,d)=m

S(n/m2, d1, d/m
2d1)

ns

= m−2s
∑

(µ,f/m)=1

1
µs

(
d1

µ

) ∑

(ν,f/m)=1

1
νs

(
∆(d/d1)

ν

)

= m−2sL(s, d1)
∏

p|f/m

(
1−

(
d1

p

)
p−s
)

× L(s,∆(d/d1))
∏

p|f/m

(
1−

(
∆(d/d1)

p

)
p−s
)
.

The required result now follows on using (91).

We next determine the behaviour of
∑∞
n=1RG(n, d)/ns as s→ 1+.

Theorem 4. Let G ∈ G(d), d > 0. As s→ 1+ we have
∞∑

n=1

RG(n, d)
ns

=
h(d) log ε(d)

2t(d)
√
d
· 1
s− 1

+B(d) + β(d,G) +O(s− 1),
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where B(d) depends only on d and not on G (see (100)) and

β(d,G) =
1

2t(d)+1

∑

d1∈F (d)
d1 6∈{1,∆}

γd1(G)L(1, d1)L(1,∆(d/d1))

×
∑

m|f(d/d1)

1
m

∏

p|m
p - f/m

(
1−

(
∆

p

)
p−1
) ∏

p|f/m

(
1−

(
d1

p

)
p−1
)

×
∏

p|f/m

(
1−

(
∆(d/d1)

p

)
p−1
)
.

Proof. By Theorem 3, we have

(92)
∞∑

n=1

RG(n, d)
ns

= S1 + S2,

where

S1 =
h(d) log ε(d)

2t(d)+1

∑

m|f

1
log ε(d/m2)h(d/m2)

· 1
m2s(93)

× 2ζ(s)L(s,∆)
∏

p|f/m
(1− p−s)

(
1−

(
∆

p

)
p−s
)
,

and

S2 =
h(d) log ε(d)

2t(d)+1

∑

m|f

1
log ε(d/m2)h(d/m2)

· 1
m2s

∑

d1∈F (d/m2)
d1 6∈{1,∆}

γd1(G)(94)

×
∏

p|f/m

(
1−

(
d1

p

)
p−s
)(

1−
(
∆(d/d1)

p

)
p−s
)

× L(s, d1)L(s,∆(d/d1)).

We first deal with S2. We have

S2 =
1

2t(d)+1

∑

m|f

h(d) log ε(d)
h(d/m2) log ε(d/m2)

· 1
m2

∑

d1∈F (d/m2)
d1 6∈{1,∆}

γd1(G)

×
∏

p|f/m

(
1−

(
d1

p

)
p−1
)(

1−
(
∆(d/d1)

p

)
p−1
)

× L(1, d1)L(1,∆(d/d1)) +O(s− 1).

We recall (see for example [12: Theorem 11.2, p. 322]), that if l is a nonsquare



56 H. Muzaffar and K. S. Williams

discriminant and d = lm2 then

(95)
L(1, d)
L(1, l)

=
∏

p|m

(
1−

(
l

p

)
p−1
)
.

By (95) and Dirichlet’s class number formula (see for example [12: Theorem
10.1, p. 321]), we have

h(d) log ε(d)
h(d/m2) log ε(d/m2)

=

√
dL(1, d)√

d/m2 L(1, d/m2)
(96)

= m
∏

p|m

(
1−

(
d/m2

p

)
p−1
)

= m
∏

p|m
p - f/m

(
1−

(
∆

p

)
p−1
)
.

Using (96), we obtain

S2 =
1

2t(d)+1

∑

m|f

1
m

∏

p|m
p - f/m

(
1−

(
∆

p

)
p−1
) ∑

d1∈F (d/m2)
d1 6∈{1,∆}

γd1(G)

×
∏

p|f/m

(
1−

(
d1

p

)
p−1
)(

1−
(
∆(d/d1)

p

)
p−1
)

× L(1, d1)L(1,∆(d/d1)) +O(s− 1).

Interchanging the orders of summation and appealing to Lemma 1(e), we
obtain

S2 =
1

2t(d)+1

∑

d1∈F (d)
d1 6∈{1,∆}

γd1(G)L(1, d1)L(1,∆(d/d1))
∑

m|f(d/d1)

1
m

(97)

×
∏

p|m
p - f/m

(
1−

(
∆

p

)
p−1
) ∏

p|f/m

(
1−

(
d1

p

)
p−1
)

×
∏

p|f/m

(
1−

(
∆(d/d1)

p

)
p−1
)

+O(s− 1)

= β(d,G) +O(s− 1).

By (93) and (96), we have

S1 =
ζ(s)
2t(d)

A(s, d),
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where

A(s, d) = L(s,∆)
∑

m|f

1
m2s−1

∏

p|m
p - f/m

(
1−

(
∆

p

)
p−1
)

(98)

×
∏

p|f/m
(1− p−s)

(
1−

(
∆

p

)
p−s
)
.

Hence, we obtain

(99) S1 =
A(1, d)
2t(d)

· 1
s− 1

+B(d) +O(s− 1),

where

(100) B(d) = (A′(1, d) + γA(1, d))/2t(d).

We emphasize that B(d) depends only on d and not on the genus G. By
(95) and Dirichlet’s class number formula, we obtain

L(1,∆) = L(1, d)
∏

p|f

(
1−

(
∆

p

)
p−1
)−1

(101)

=
h(d) log ε(d)√

d

∏

p|f

(
1−

(
∆

p

)
p−1
)−1

.

By (98) with s = 1 and (101), we obtain after some simplification

(102) A(1, d) =
h(d) log ε(d)√

d

∑

m|f

1
m

∏

p|f/m
(1− p−1) =

h(d) log ε(d)√
d

.

By (99) and (102), we obtain

(103) S1 =
h(d) log ε(d)

2t(d)
√
d
· 1
s− 1

+B(d) +O(s− 1).

By (103), (97) and (92), we obtain the required result.

5. Evaluation of some definite integrals. Proofs of Theorems
5–10. Theorem 5, which is a consequence of Theorems 2 and 4, evaluates
a class of definite integrals. Theorems 6–10 all follow from Theorem 5.

Theorem 5. Let G1, G2 ∈ G(d). Then

1�

0

( ∑

[a,b,c]∈G1

E(a, b, c, t)−
∑

[a,b,c]∈G2

E(a, b, c, t)
)
dt
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=
∑

[a,b,c]∈G1

(
π2
√
d

6a
− J(a, b, c) + log ε(d) log a

)

−
∑

[a,b,c]∈G2

(
π2
√
d

6a
− J(a, b, c) + log ε(d) log a

)

−
√
d (β(d,G1)−β(d,G2)),

where all forms (a, b, c) are chosen so that a > 0,

E(a, b, c, t) =
[(g−1)/2]∑

l=1

(F (α, l, t, g) + F (α′, l, t, g)) + (1 + (−1)g)
log(1 + tε)

1 + t
,

and

J(a, b, c)

= − 2
[(g−1)/2]∑

l=1

(
log(2 sin(πl/g)) log(2|sin(πlα/g)|)−

(
π

2
− πl

g

)(
π

2
− πl∗

g

))

− 1 + (−1)g

2
log2 2.

Proof. In this proof, all forms (a, b, c) satisfy a > 0. We also write ε =
ε(d). By Theorem 2, we have
∞∑

n=1

RG(n, d)
ns

=
∑

[a,b,c]∈G
Z(a,b,c)(s)

=
∑

[a,b,c]∈G

(
log ε√
d
· 1
s− 1

+ V (d) +
π2

6a

+
log ε log a√

d
− 1√

d
W(a,b,c)

)
+O(s− 1)

=
h(d) log ε

2t(d)
√
d
· 1
s− 1

+
V (d)h(d)

2t(d)

+
∑

[a,b,c]∈G

(
π2

6a
+

log a log ε√
d

− 1√
d
W(a,b,c)

)
+O(s− 1).

By comparing with Theorem 4, we obtain

B(d) + β(d,G) =
V (d)h(d)

2t(d)
+

∑

[a,b,c]∈G

(
π2

6a
+

log ε log a√
d

− 1√
d
W(a,b,c)

)
,

which is (15). Thus
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β(d,G1)− β(d,G2) =
∑

[a,b,c]∈G1

(
π2

6a
+

log ε log a√
d

− 1√
d
W(a,b,c)

)

−
∑

[a,b,c]∈G2

(
π2

6a
+

log ε log a√
d

− 1√
d
W(a,b,c)

)
,

which is (16). The result follows on noting that

W(a,b,c) =
1�

0

E(a, b, c, t) dt+ J(a, b, c)

and rearranging terms.

We now set

(104) D = dy0(d)2.

Then ε(D) = ε(d) = ε and y0(D) = 1. Since D + 4 is a square, we have
D+4 ≡ 0, 1, 4 or 9 (mod 16), so that D ≡ 12, 13, 0 or 5 (mod 16). We are only
interested in those D for which H(D) contains a class of the type [2, b, c] or
[4, b, c]. This rules out D ≡ 5 (mod 8), and so we are only interested in the
cases D ≡ 12 (mod 16) and D ≡ 0 (mod 16). In the case D ≡ 0 (mod 16),
we also have ε(D/4) = ε and y0(D/4) = 2.

If D is a positive integer such that D ≡ 12 (mod 16), D + 4 is a square
and H(D) has one class per genus, then we show in Theorem 6 that we can
explicitly evaluate � 1

0
log(1+tε)

1+t dt.
If D is a positive integer such that D ≡ 0 (mod 16), D + 4 is a square,

D/4 ≡ 8 (mod 16) and H(D) has one class per genus, then we show in
Theorems 8 and 9 that we can evaluate explicitly both of the integrals

� 1
0

log(1+tε)
1+t dt and � 1

0
tan−1(tε)

1+t2 dt.
Before continuing we note the values of E(a, b, c, t) and J(a, b, c) for

g = 1, 2 and 4, which we shall need later.
If g = 1, we have E(a, b, c, t) = J(a, b, c) = 0.
If g = 2, we have

E(a, b, c, t) = 2 · log(1 + tε)
1 + t

, J(a, b, c) = − log2 2.

If g = 4, we have

E(a, b, c, t) = 2 · t log(1 + t2ε)− 2(−1)(α−1)/2 tan−1(tε)
1 + t2

+ 2 · log(1 + tε)
1 + t

,

J(a, b, c) = − 3
2

log2 2 + (−1)(α−1)/2 π
2

8
.

The next result is a slight modification of a result of Chowla ([2], [4:
p. 967]). It is useful in proving that certain form classes are not equal.
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Lemma 17. Let k and m be integers with k > 1, m not a square and
−(2k − 2) < m < 2k + 2. Then the equation

(105) x2 − (k2 − 1)y2 = m

has no solution in positive integers x and y.

Proof. We suppose that (105) has a solution in positive integers x and
y. Let (x1, y1) be the solution in positive integers to (105) for which y1 is
least. Let

x2 = |kx1 − (k2 − 1)y1|, y2 = |x1 − ky1|.
Then x2

2 − (k2 − 1)y2
2 = x2

1 − (k2 − 1)y2
1 = m. If y2 = 0 then m = x2

2, a
contradiction. Thus, y2 ≥ 1. If x2 = 0, we have

m = −(k2 − 1)y2
2 ≤ −(k2 − 1) ≤ −(2k − 2),

a contradiction. Thus x2 > 0. Hence, by the minimality of y1, we have
y2 ≥ y1. Thus, either x1 − ky1 ≥ y1 or x1 − ky1 ≤ −y1. If x1 − ky1 ≥ y1, we
have

m = x2
1 − (k2 − 1)y2

1 ≥ ((k + 1)2 − (k2 − 1))y2
1 = (2k + 2)y2

1 ≥ 2k + 2,

a contradiction. Similarly if x1− ky1 ≤ −y1, we have m ≤ −(2k− 2), which
is a contradiction.

First we consider the case D ≡ 12 (mod 16). For a positive integer D, it
is easily checked that D ≡ 12 (mod 16) with D + 4 a square if and only if
D = 4(4l2 − 1) for some positive integer l.

Lemma 18. Let D = 4(4l2 − 1) for some positive integer l. Then
[
1, 0,−D

4

]
6=
[
2, 2,

4−D
8

]

in H(D).

Proof. If [1, 0,−D/4] = [2, 2, (4−D)/8], we have

(106) 2 = x2 − D

4
y2 = x2 − (4l2 − 1)y2

for some positive integers x, y. But, by Lemma 17, equation (106) has no
solution in positive integers since 2 < 2(2l) + 2.

Theorem 6. Let D = 4(4l2 − 1) for some positive integer l and sup-
pose that H(D) has one class per genus. Let G1 be the genus containing
[1, 0,−D/4] and let G2 be the genus containing [2, 2, (4−D)/8]. Then

1�

0

log(1 + tε)
1 + t

dt =

√
D

2
(β(D,G1)− β(D,G2))− π2

√
D

24
+

log 2 log 2ε
2

,

where ε = ε(D) = 2l +
√

4l2 − 1.
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Proof. We observe that G1 6= G2 by Lemma 18. The result follows on
using Theorem 5, noting that y0(D) = 1, g = 1 for the form (1, 0,−D/4),
and g = 2 for the form (2, 2, (4−D)/8) and using the values of E(a, b, c, t)
and J(a, b, c) given just before Lemma 17.

The following are the first few cases where the conditions of Theorem 6
are satisfied so that we can calculate � 1

0
log(1+tε)

1+t dt:

• l = 1, D = 12, ε = 2 +
√

3,
• l = 2, D = 60, ε = 4 +

√
15,

• l = 3, D = 140, ε = 6 +
√

35,
• l = 4, D = 252, ε = 8 +

√
63,

• l = 6, D = 572, ε = 12 +
√

143,
• l = 7, D = 780, ε = 14 +

√
195.

Theorem 7.
1�

0

log(1 + t2+
√

3)
1 + t

dt =
π2

12
(1−

√
3) + log 2 log(1 +

√
3).

1�

0

log(1 + t4+
√

15)
1 + t

dt =
π2

12
(2−

√
15) + log

(
1 +
√

5
2

)
log(2 +

√
3)

+ log 2 log(
√

3 +
√

5).
1�

0

log(1 + t6+
√

35)
1 + t

dt =
π2

12
(3−

√
35) + log

(
1 +
√

5
2

)
log(8 + 3

√
7)

+ log 2 log(
√

5 +
√

7).
1�

0

log(1 + t8+
√

63)
1 + t

dt =
π2

12
(4−

√
63) + log

(
5 +
√

21
2

)
log(2 +

√
3)

+ log 2 log(3 +
√

7).
1�

0

log(1 + t12+
√

143)
1 + t

dt =
π2

12
(6−

√
143) + log

(
3 +
√

13
2

)
log(10 + 3

√
11)

+ log 2 log(
√

11 +
√

13).
1�

0

log(1 + t14+
√

195)
1 + t

dt =
π2

12
(7−

√
195) + log

(
1 +
√

5
2

)
log(25 + 4

√
39)

+ log
(

3 +
√

13
2

)
log(4 +

√
15)

+ log 2 log(
√

15 +
√

13).
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The second, third and fifth integrals in Theorem 7 are due to Herglotz
[11, p. 14].

We now turn to the case D ≡ 0 (mod 16). Let D be a positive integer.
Then D ≡ 0 (mod 16) with D + 4 a square if and only if D = 16(l2 + l) for
some positive integer l. If D has this form, then D ≡ 0 (mod 32) and

D

4
≡
{

0 (mod 16) if l ≡ 0 or 3 (mod 4),
8 (mod 16) if l ≡ 1 or 2 (mod 4).

Lemma 19. Let D = 16(l2 + l) for some positive integer l with l ≡ 1 or
2 (mod 4). Then H(D) and H(D/4) have the same number of classes per
genus.

Proof. Since D+4 is a square, we have ε(D) = ε(D/4). Hence (96) gives

h(D)
h(D/4)

= 2.

Since D ≡ 0 (mod 32), we have t(D) = ω(D). Since D/4 ≡ 8 (mod 16), we
have t(D/4) = ω(D/4)− 1 = ω(D)− 1. Hence t(D) = 1 + t(D/4). Thus

h(D/4)
2t(D/4)

=
h(D)/2
2t(D/4)

=
h(D)
2t(D)

as required.

Lemma 20. Let D = 16(l2 + l) for some positive integer l. Then

[1, 0,−D/4] 6= [4, 4, (16−D)/16] in H(D).

Proof. Suppose that [1, 0,−D/4] = [4, 4, (16−D)/16]. Then there exist
coprime integers α, γ such that α2 −Dγ2/4 = 4. Thus

α+ γ
√
D/4

2
= ±ε(D/4)n,

for some integer n. But this gives

α+ γ
√
D/4 = ±2(2l + 1 +

√
D/4)n,

so that α and γ are even, a contradiction.

Lemma 21. Let D = 16(l2 + l) for some positive integer l with l ≡ 1 or
2 (mod 4). Then [1, 0,−D/16] 6= [2, 0,−D/32] in H(D/4) except if l = 1.

Proof. If l = 1, we have [1, 0,−2] = [2, 0,−1] in H(8). If l > 1 and
[1, 0,−D/16] = [2, 0,−D/32] in H(D/4), then there exist positive integers
x, y with x2 −Dy2/16 = 2. Hence

(107) 8 = (2x)2 − D

4
y2 = u2 − ((2l + 1)2 − 1)v2
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for some positive integers u, v. But, by Lemma 17, the equation (107) has
no solution in positive integers since 8 < 2(2l + 1) + 2.

Theorem 8. Let D = 16(l2 +l) for some positive integer l. Suppose that
H(D) has one class per genus. Let G1 be the genus containing [1, 0,−D/4]
and let G2 be the genus containing [4, 4, (16−D)/16]. Then

1�

0

3t log(1 + t2ε) + 2(−1)l tan−1(tε)
1 + t2

dt

=

√
D

2
(β(D,G1)− β(D,G2))− π2

√
D

16
+ (−1)l

π2

16
+ log 2 log(23/4ε),

where ε = ε(D) = 2l + 1 +
√
D/4 = 2l + 1 +

√
4l2 + 4l.

Proof. From Lemma 20 we see that G1 6= G2. We have y0(D) = 1. For
the form (1, 0,−D/4), we have g = 1. For the form (4, 4, (16 − D)/16),
we have g = 4, α = 2l − 1. Using these facts together with the values of
E(a, b, c, t) and J(a, b, c) given before Lemma 17 and the relation

1�

0

log(1 + tε)
1 + t

dt = 2
1�

0

t log(1 + t2ε)
1 + t2

dt

in Theorem 5 gives the required result.

In a similar manner, we obtain

Theorem 9. Let D = 16(l2 + l) for some positive integer l with l ≡ 1 or
2 (mod 4) (so that D/4 ≡ 8 (mod 16)). Let H(D) have one class per genus
so that H(D/4) also has one class per genus by Lemma 19. In H(D/4), let
Ĝ1 be the genus containing [1, 0,−D/16] and let Ĝ2 be the genus containing
[2, 0,−D/32]. Then

1�

0

t log(1 + t2ε) + 2(−1)l+1 tan−1(tε)
1 + t2

dt

=

√
D

4
(β(D/4, Ĝ1)−β(D/4, Ĝ2))− π

2
√
D

48
+ (−1)l+1 π

2

16
+

log 2 log(
√

2 ε)
2

,

where ε = ε(D) = ε(D/4) = 2l + 1 +
√

4l2 + 4l.

We note by Lemma 21 that Ĝ1 6= Ĝ2 if l 6= 1. If D = 16(l2 + l), for some
positive integer l with l ≡ 1 or 2 (mod 4) and H(D) has one class per genus,
both Theorems 8 and 9 are applicable. Thus we can calculate both

1�

0

log(1 + tε)
1 + t

dt = 2
1�

0

t log(1 + t2ε)
1 + t2

dt and
1�

0

tan−1(tε)
1 + t2

dt.
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The following are the first few cases where this happens:

• l = 1, D = 32, ε = 3 +
√

8,
• l = 2, D = 96, ε = 5 +

√
24,

• l = 5, D = 480, ε = 11 +
√

120,
• l = 6, D = 672, ε = 13 +

√
168.

Applying Theorems 8 and 9 in these cases, we obtain

Theorem 10.
1�

0

log(1 + t3+
√

8)
1 + t

dt =
π2

24
(3−

√
32) +

1
2

log 2 log(2(3 +
√

8)3/2),

1�

0

tan−1(t3+
√

8)
1 + t2

dt =
1
16

log 2 log(3 +
√

8).

1�

0

log(1 + t5+
√

24)
1 + t

dt =
π2

24
(5−

√
96) +

1
2

log(1 +
√

2) log(2 +
√

3)

+
1
2

log 2 log(2(5 +
√

24)3/2),

1�

0

tan−1(t5+
√

24)
1 + t2

dt =
1
8

log(1 +
√

2) log(2 +
√

3)− 1
16

log 2 log(5 +
√

24).

1�

0

log(1 + t11+
√

120)
1 + t

dt =
π2

24
(11−

√
480) +

1
2

log(1 +
√

2) log(4 +
√

15)

+
1
2

log(2 +
√

3) log(3 +
√

10)

+
1
2

log
(

1 +
√

5
2

)
log(5 +

√
24)

+
1
2

log 2 log(2(11 +
√

120)3/2),

1�

0

tan−1(t11+
√

120)
1 + t2

dt = − 1
8

log(1 +
√

2) log(4 +
√

15)

− 1
8

log(2 +
√

3) log(3 +
√

10)

+
3
8

log
(

1 +
√

5
2

)
log(5 +

√
24)

+
1
16

log 2 log(11 +
√

120).
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1�

0

log(1 + t13+
√

168)
1 + t

dt =
π2

24
(13−

√
672)

+
1
2

log(1 +
√

2) log
(

5 +
√

21
2

)

+
1
4

log(2 +
√

3) log(15 +
√

224)

+
1
4

log(5 +
√

24) log(8 +
√

63)

+
1
2

log 2 log(2(13 +
√

168)3/2),

1�

0

tan−1(t13+
√

168)
1 + t2

dt = − 3
8

log(1 +
√

2) log
(

5 +
√

21
2

)

+
1
16

log(2 +
√

3) log(15 +
√

224)

+
1
16

log(5 +
√

24) log(8 +
√

63)

− 1
16

log 2 log(13 +
√

168).
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[5] S. Chowla and A. Selberg, On Epstein’s zeta function (I), Proc. Nat. Acad. Sci.
U.S.A. 35 (1949), 371–374. [Chowla’s Collected Papers, Vol. II, 719–722.]

[6] C. Deninger, On the analogue of the formula of Chowla and Selberg for real quadratic
fields, J. Reine Angew. Math. 351 (1984), 171–191.

[7] P. G. L. Dirichlet, Vorlesungen über Zahlentheorie, Chelsea, New York, 1968.
[8] P. Epstein, Zur Theorie allgemeiner Zetafunctionen, Math. Ann. 56 (1903), 615–

644.
[9] D. R. Estes and G. Pall, Spinor genera of binary quadratic forms, J. Number Theory

5 (1973), 421–432.
[10] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th

ed., Academic Press, 1994.
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